
P r i m e « P r o g r a m m e r ' s G u i d e
to Prime Networks
Revision 21.0

DOC10113-1LA

Programmer's Guide
to Prime Networks

First Edition

Robert Canavello
Emily Stone

Updated for Revision 22.0 By

Bernard Gilman

This document reflects the software operation
of the Prime Computer and its supporting
systems and utilities as implemented at
Master Disk Revision 21.0 (Rev. 21.0).

Prime Computer, Inc., Prime Park, Natick, MA 01760

COPYRIGHT INFORMATION

The information in this document is subject to change without notice and should not be construed as
a commitment by Prime Computer, Inc. Prime Computer, Inc. assumes no responsibility for any
errors that may appear in this document.
The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.
Copyright © 1988 by Prime Computer, Inc., Prime Park, Natick, Massachusetts 01760
PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of Prime Computer, Inc.
DISCOVER, EDMS, FM+, INFO/BASIC, INFORM, Prime INFORMATION, Prime
INFORMATION CONNECTION, Prime INFORMATION EXL, MDL, MIDAS, MIDASPLUS,
MXCL, PRIME EXL, PRIME MEDUSA, PERFORM, PERFORMER, PRIME/SNA, PRIME
TIMER, PRIMAN, PRIMELINK, PRIMENET, PRIMEWAY, PRIMEWORD, PRIMIX, PRISAM,
PRODUCER, Prime INFORMATION/pc, PST 100, PT25, PT45, PT65, PT200, PT250, PW153,
PW200, PW250, RINGNET, SIMPLE, 50 Series, 400, 750, 850, 2250, 2350, 2450, 2455, 2550,
2655, 2755, 4050, 4150, 6350, 6550, 9650, 9655, 9750, 9755, 9950, 9955, and 9955II are
trademarks of Prime Computer, Inc.

PRINTING HISTORY

First Edition (DOC10113-1LA) July 1987 for Revision 21.0
Update 1 (UPD10113-11A) September 1988 for Revision 22.0

CREDITS

Editorial: Barbara Fowlkes, Joyce Haines, Michael McNulty, Kathe Rhoades
Project Support: Bertil Lindblad, Peter Lynch, Graeme Williams, Nancy Webb Leblang
Illustration: Anna Spoerri
Design: Carol Smith
Document Preparation: Mary Mixon, Margaret Theriault
Production: Judy Gordon
Composition: Julie Cyphers, Anne Marie Fantasia

HOW TO ORDER TECHNICAL DOCUMENTS

Follow the instructions below to obtain a catalog, a price list, and information on placing orders.
United States Only: Call Prime Telemarketing, toll free, at 800-343-2533, Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).
International: Contact your local Prime subsidiary or distributor.

CUSTOMER SUPPORT CENTER

Prime provides the following toll-free numbers for customers in the United States needing service:

1-800-322-2838 (Massachusetts)
1-800-541-8888 (Alaska and Hawaii)
1-800-343-2320 (within other states)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided in the back of this book.
Address any additional comments on this or other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

Contents
vuAbout This Book

1 Introduction to Network Programming 1-1
P R I M E N E T A r c h i t e c t u r e 1 - 1
I P C F P r o g r a m m i n g 1 - 3
F T S P r o g r a m m i n g 1 - 5

2 P o r t s a n d V i r t u a l C i r c u i t s 2 1
A s s i g n i n g P o r t s 2 - 1
E s t a b l i s h i n g a V i r t u a l C i r c u i t 2 - 3

3 I P C F P r o g r a m m i n g P r i n c i p l e s 3 - 1
F r o n t - e n d P r i n c i p l e s 3 - 1
S e r v e r P r i n c i p l e s 3 - 2

S t o r a g e o f V a r i a b l e s 3 - 2
P e r f o r m a n c e I s s u e s 3 - 5
T h e F a s t S e l e c t F a c i l i t y 3 - 6
N e t w o r k E v e n t W a i t i n g 3 - 6

C h e c k i n g R e t u r n C o d e s 3 - 7
T h e V i r t u a l C i r c u i t S t a t u s A r r a y 3 - 8

Defin ing Your Own Message Pro toco ls 3 -9
V i r t u a l C i r c u i t C l e a r i n g 3 - 9

P r o g r a m C l o s e d o w n 3 - 1 0
The Effect of START_NET and STOP_NET on IPCF Programs 3-10

4 I P C F S u b r o u t i n e s 4 - 1
I P C F O v e r v i e w 4 - 1
S u b r o u t i n e D e s c r i p t i o n s 4 - 3

5 I P C F P r o g r a m m i n g E x a m p l e s 5 - 1
F i l e - t r a n s m i s s i o n S y s t e m 5 - 1
Database Example Using Fast Select Calls 5-8

6 F T S P r o g r a m m i n g 6 - 1
D e c l a r i n g F T $ S U B 6 - 1
D e fi n i n g K e y s a n d E r r o r C o d e s 6 - 1
I n v o k i n g t h e F T $ S U B S u b r o u t i n e 6 - 2
E x a m p l e 6 - 2 8

A X . 2 5 P r o g r a m m i n g G u i d e l i n e s a 1
P R I M E N E T ' s X . 2 5 S u p p o r t A - 1

Optional Fields of X.25 Packets and IPCF Parameters A-2
X . 2 5 P r o t o c o l R e s t r i c t i o n s A - 3
The Protocol ID and User Data Fields A-4
X . 2 5 F a c i l i t i e s A - 5

B F T S E r r o r M e s s a g e s b i
G e n e r a l E r r o r M e s s a g e s B - l
F T $ S U B E r r o r M e s s a g e s B - 2

C Clearing Causes and Diagnostic Codes c-i

D Prime Network Programming Glossary gl 1

I n d e x I n d e x 1

vi

About This Book

The Programmer's Guide to Prime Networks provides tutorial and reference information about
• Interprocess Communications Facility (IPCF) subroutines
• The programming interface to the File Transfer Service (FTS)

There are six chapters and four appendices:
• Chapter 1 is an introduction intended for programmers who have never written

applications on a network before.
• Chapter 2 provides background information on virtual circuits.
• Chapter 3 describes IPCF programming principles.
• Chapter 4 is the keystone of the book. Each IPCF subroutine is described in detail.
• Chapter 5 provides IPCF programming examples.
• Chapter 6 explains how to incorporate the FT$SUB subroutine into a file transfer

application that uses FTS. Examples are included.
• Appendix A contains information on how PRIMENET™ software supports the CCITT

X.25 standards of 1980 and 1984.
• Appendix B describes the error messages that may be generated while writing an FTS

application.
• Appendix C lists clearing causes and diagnostic codes for virtual circuits.
• Prime Network Glossary describes Prime networking terms. Key terms are printed in

boldface type the first time they appear in the text.

Related Documentation
This guide is one of a series of books about Prime networks. The other books in the series may be
of interest to programmers. They are listed below.

• The User's Guide to Prime Network Services (DOC10115-1LA)
• Operator's Guide to Prime Networks (DOC10114-1LA) and the update package for

Rev. 22.0 (UPD10114-11A)
• NTS User's Guide (DOC10117-2LA)
• PRIMENET Planning and Configuration Guide (DOC7532-4LA)

VII

Programmer's Guide to Prime Networks

Prime Documentation Conventions
The following conventions are used in command formats, statement formats, and in examples
throughout this document. Examples illustrate the uses of these commands and statements in
typical applications.

Convention
UPPERCASE

lowercase

Abbreviations
in format
statements

Brackets
[]

Braces
{ }

Parentheses
()

Hyphen

Bold Italics
in examples

Angle brackets
in messages

< >

Explanation
In command formats, words in
uppercase indicate the names of
commands, options, statements,
and keywords. Enter them in ei
ther uppercase or lowercase.
In command formats, words in
lowercase indicate variables for
which you must substitute a suit
able value.
If an uppercase word in a com
mand format has an abbreviation,
either the abbreviation is under
scored or the name and
abbreviation are placed within
braces.
Brackets enclose a list of one or
more optional items. Choose
none, one, or more of these items.
Braces enclose a list of items.
Choose one and only one of
these items.
In command or statement for
mats, you must enter parentheses
exactly as shown.
Wherever a hyphen appears as
the first character of an option, it
is a required part of that option.
In examples, user input is in bold
italics but system prompts and
output are not.

In messages, a word or words en
closed within angle brackets
indicates a variable for which the
program substitutes the appropri
ate value.

Example
SLIST

LOGIN user-id

LOGOUT

jSET_QUOTA\
L S Q J

LD ["-BRIEF!
L-SIZE J

CLOSE
{filename"!A L L J

DIM array (row, col)

SPOOL -LIST

OK, RESUME MY_PROG
This is the output
of MY_PROG.CPL
OK,
Disk <diskname>

VIII

Introduction to Network
Programming

This chapter provides a context for programmers who write distributed applications on a Prime
system. The following topics are discussed:

• The architecture of PRIMENET
• The underlying structure of applications that use the programming interface to

PRIMENET
• The programming interface to the File Transfer Service (FTS)

PRIMENET Architecture
The 50 Series™ network services are based on PRIMENET, the Prime distributed network
facility. PRIMENET software provides standardized network services over all physical media on
which Prime systems operate.
PRIMENET is a packet-switching network, that is, a network in which each message is broken up
into one or more packets, each of which the network transfers as a unit. PRIMENET transfers
packets on a logical channel known as a virtual circuit.
PRIMENET consists of several levels, as shown in Figure 1-1. These levels are based on the
International Organization for Standardization's Open Systems Interconnection (ISO OSI)
model. The 50 Series systems are compatible with all other systems that support the same
protocols. In particular, they are compatible with systems that support X.25 protocols at Layer 3
of the ISO OSI model.

1-1

Programmer's Guide to Prime Networks

IT)
CM
X
H
LU
Z
LU
_>
DC
Q.

CO
Z<
__l

LAN300 Host
Controller (LHC300)

'0?

] " O CO

8co
Z O
< O

L

C
] " CO

!i _>

1-
LU
Z
Oz
QC

ET Node Cor PNC II)

CO

E
to
O)o
CL—.
CO

Z>
0 8
CO
0
co

_D
"cO
c
E

(0r
£c
CDc

O1—
_ _ t
3

CO
LL
O
CL

' _ , Z \

_ y " — ' z c m t

File
Transfer Service (FTS)

-1°- ii
cO
O

A_. ^ *' /

NPX
Remote File

Access

X 0

°- S
_J O-a O

*!- j£
CO c

X _ J "1
5<S

■0
>_. N_ x ° ® a>

LL 00 CD —1_|
v ^ r ^ v

NETLINK
PAD

Emulator
_ i__c
Lj
i n
CM

X

X " %

C O —

O %
O

f 9 ^«HI CO q -i

•O
<_* 0 m «n

\ | ^ Q % % F

Remote Login Service

(X.3, X.28, X.29)

LL (/) CD —1
_ l

i s _ ^ °

LL Hi"" <
CD

m 20 t_
0
0

"^^2 ll I
LL 00 CD —1

"vj\x 8

Upper Levels Level 3 Level 2

" 3

Figure 1-1
Levels of PRIMENET Architecture

1-2

Introduction to Network Programming

r PRIMENET Levels
PRIMENET's architecture consists of several functional levels, as shown in Figure 1-1. Each
level contains a standard interface to the adjacent levels, and each level implements a protocol (a
set of rules) to communicate with peer entities on different systems. PRIMENET has the
following levels:

•

•

•

Upper levels
Level 3, the packet level
Level 2, the link protocol level

• Level 1, the hardware interface

The upper levels of PRIMENET contain applications that perform actions directly specified by
users or actions that facilitate completion of user tasks. These levels use the services of the lower
levels. PRIMENET's upper levels correspond to the upper layers of the ISO OSI model; its lower
levels, which contain the PRIMENET internals, correspond to the lower layers of the model.
Level 3, the packet level, corresponds to the ISO OSI network layer. The packet level implements
the CCITT (Consultative Committee for International Telephony and Telegraphy) X.25
protocol to manage the transmission of packets in the network. This level creates and controls
virtual circuits across the network, handles error recovery, and controls the flow of information. It
also keeps track of the destination process of each packet. User applications call the Interprocess
Communications Facility (IPCF) subroutines to use the services of the packet level.
Level 2, the link protocol level, corresponds to the ISO OSI data link layer. It specifies the
protocol that two linked systems must adhere to when transferring information between them.
This protocol dictates the format of the data, how the systems should request, transfer, receive,
and acknowledge the data, and how the systems signal faulty transmissions.
Level 1, the hardware interface level, corresponds to the ISO OSI physical layer. This layer acts
as an intermediary between the physical transmission medium and the rest of PRIMENET.

IPCF Programming
With Interprocess Communications Facility (IPCF) subroutines, you can write multiple-process
applications that can run on one or more PRIMENET systems. To exchange data, programs must
follow a definite sequence of steps. For this reason, all applications that use the IPCF subroutines
share a common underlying structure.
An application that uses IPCF subroutines to communicate with a remote system must have some
way of identifying both the remote system and the destination process on the remote system. A
port is a logical address within a given system. You can assign a port to a process, which permits
that process to receive calls addressed to that port. The calling module initiates the call request.
Once the virtual circuit is established, either module can transmit data messages. The sequence of
tasks for each application is outlined below. Each task is followed by the name (or names) of the
IPCF subroutine(s) that perform the task.

1-3

Programmer's Guide to Prime Networks

Note
This example is for an application with just two modules.

Tasks for the Calling Module
• Issue a call request.
• Check the virtual circuit status array to see if the connection is completed (X$CONN/

X$FCON/X$SCON/XLCONN).
• Transmit data (X$TRAN).
• Receive data (X$RCV).
• Clear the circuit (X$CLRyX$FCLR/XLCLR).

Tasks for the Called Module
• Assign the proper PRIMENET port (X$ASGN/XLASGN).
• Wait (X$WAIT) for an incoming call.
• When a call occurs, obtain data about it (X$GCON/X$FGCN/XLGCON/XLGC$).
• Accept the connection (X$ACPT/X$FACP/X$SACP/XLACPT).
• Transmit data (X$TRAN) and receive data (X$RCV).
• Clear the circuit (XCLR/XFCLR/XLCLR).

Note
Either the calling or the called application can terminate the
connection by clearing the virtual circuit. The application program that
receives the last message should be the one to issue the clear request.

While the above general steps are common to all IPCF applications, the details of each application
will be unique, and will depend on the application's specific requirements for data transfer. In
addition to the subroutines named in the above task lists, other routines can be used to

• Deassign ports (X$UASN/XLUASN)
• Clear all active virtual circuits (X$CLRA)
• Transfer control of virtual circuits to another process (X$GVVC/XLGWC)
• Return status information (X$STAT)
• Return the contents of various packets (XLGA$, XLGC$, XLGI$)
• Reset the virtual circuit (X$RSET)

1-4

Introduction to Network Programming

You can design a sequence of messages between the calling and called programs to ensure both
programs' proper operation and to handle potential errors and malfunctions. For example, you can
send interrupts (X$TRAN) and specify diagnostics when clearing a virtual circuit (X$CLR/
X$FCLR/XLCLR). You can use the Fast Select facility to transfer data and clear the circuit with
one call. Chapter 5, IPCF Programming Examples, shows how to design an application using the
Fast Select facility.
The calling application can function as a front-end program. The front-end program performs line
control, message handling, code conversion, and error control. The front-end program also
initiates the request to establish a virtual circuit to a program already running on a remote system.
That remote program, the called application, is a server, and is likely to run as a phantom user
process.

FTS Programming
As more applications involving distributed processing develop, corresponding programming
interfaces are being created. One such interface exists to Prime's File Transfer Service (FTS).
The FT$SUB subroutine allows an application program to perform any function that a user can
perform by using the FTR command. A program can use FT$SUB to submit, modify, cancel,
abort, hold, release, and check the status of file transfer requests. FT$SUB cannot be called from
R-mode or S-mode programs.
The FT$SUB subroutine makes use of keys and error codes specific to FTS, all of which have
names beginning with F$ or Q$. These keys and codes are defined in an insert file in SYSCOM.
In addition, the FT$SUB subroutine is installed as a shared subroutine library. A library file is
used to satisfy the references to this subroutine during your program load sequence.
To use the FT$SUB subroutine, you must

• Declare the FT$SUB subroutine in your program.
• Use an %INCLUDE or $INSERT statement in your program to define the keys and

error codes related to FT$SUB.
• Use the LIBRARY VFTSLB command in your program load sequence to load the FTS

library.

Chapter 6, FTS Programming, explains in detail how to use the FT$SUB subroutine.

1-5

Ports and Virtual Circuits

r
This chapter discusses the following topics:

• Assigning ports
• Establishing a virtual circuit
• Polling virtual circuits
• Clearing causes and diagnostic codes for virtual circuits

Assigning Ports
To ensure that incoming calls reach their proper destination, PRIMENET passes calls to target
processes based on port(s) that you have assigned to a target process. You assign a port to a
process with a call to the X$ASGN or XLASGN routine. The port mechanism is depicted in
Figure 2-1.
Normally you assign a port by number in the range of 0 through 99. Besides assigning a port by
number, a privileged process can assign a port by matching the fields of an incoming call against
a mask you have specified in the call to XLASGN. In this case you can use ports numbered 100
through 256. Refer to the description of X$ASGN/XLASGN in Chapter 4, IPCF Subroutines, for
further information.
You can assign a port either permanently or with the provision that it be automatically deassigned
after a certain number of connections. If you assign a port to a process where the port has been
previously assigned, PRIMENET places the process on a queue for that port.

2-1

Programmer's Guide to Prime Networks

D

D
Incoming
Requests
for Calls

0

0

58

124

254

255

Reserved for Remote Login

Process A Process B

Process C

Process D Process E

Reserved for System Use

Remote
Login
PortO

User
Ports
1-99

Process F

System
Ports
100-250

FIGURE 2-1
The Port Mechanism

2-2

Ports and Virtual Circuits

You pass a parameter in the assign statement to specify the number of calls permitted to that port
for that process. A negative value keeps that process last in the queue, ensuring that every request
to that port gets processed before this request. A value of zero means that the process will handle
all calls to the port. A process can assign more than one port. There is no relationship between the
process number and the ID number of the assigned port.
When you call X$CONN in the calling module, you specify a port number to direct the call to the
destination process that has assigned that port. If you do not specify a port number in the calling
module, the call is sent to the default port on the target system, which is PRIMENET's remote
login port (Port 0).

Note
A process that only makes calls, and does not receive them, need not
assign a port.

Establishing a Virtual Circuit
When one process specifies the system and port of another process, PRIMENET establishes a
bidirectional link between the two through a virtual circuit (VC). A virtual circuit is a logical
path across the network from one process to another. Virtual circuits do not necessarily
correspond exactly to physical communication lines. For example, one physical line may carry
many virtual circuits, just as one telephone trunk line may carry many voices at the same time.
Moreover, a virtual circuit between two given systems might use a different physical path each
time it is established (if different physical paths exist). PRIMENET currently allows as many as
255 virtual circuits at a time on each system.

Note
The virtual circuit ID is what users and PRIMENET use to
communicate about a particular virtual circuit. This is the vcid
argument passed to the IPCF subroutines. The Logical Channel
Number (LCN) is what PRIMENET and the network use to
communicate about a particular virtual circuit. This is not the same
value as the virtual circuit ID.

In addition to being able to create virtual circuits to ports on remote systems, you can create a
virtual circuit to ports on the local system. You do this by specifying the local system as the
destination system in the call connect subroutine. A virtual circuit created this way behaves
exactly the same as one that is created to a remote system. This is known as a loopback
connection. This feature is useful for developing and testing network applications because it
permits the testing of several different pieces of a distributed application on the same system.
Also, it permits local users to access a system the same way that remote users do.
PRIMENET permits you to switch a virtual circuit over to another application, or to remote login.
Refer to the description of X$GVVC/XLGVVC in Chapter 4, IPCF Subroutines, for more
information on transferring virtual circuits to another process.

2-3

Programmer's Guide to Prime Networks

Polling Virtual Circuits
Each process that holds virtual circuit connections must specify an array for each virtual circuit's
status. The purpose of the virtual circuit status array is to provide processes with an easy way to
poll the state of their virtual circuits. When needed, PRIMENET reports status changes for the
virtual circuit into that array.
A process that is managing many virtual circuits, each with several data-moving operations in
progress, need only poll the virtual circuit status arrays for each virtual circuit for the completed
status (XS$CMP) to see which circuit(s) are ready for more traffic.
The caller specifies this virtual circuit status array in the call to the connect routine (X$CONN/
X$FCON/X$SCON/XLCONN). The call receiver specifies the array in a call to the accept routine
(X$ACPT/X$FACP/X$SACP/ XLACPT). The virtual circuit status array may be written into by
PRIMENET until the virtual circuit is cleared. The clear confirmation is written into the array as
well.
The first of the two array elements is continually updated by PRIMENET to reflect the latest
status of the circuit. When a data transmit or data receive completes, this virtual circuit status
word is set to XS$CMP.
If the circuit is reset because of errors in the communications media or through network
congestion, the virtual circuit status word is set to XS$RST. In addition, the status arguments of
any subsequent data transmits or data receives are also set to the same value.
When a user-held network connection is disconnected (cleared), the first word of the virtual
circuit status array is set to the "circuit cleared" status code (XS$CLR). At this time, the second
word of the array is also valid and indicates the reason for the clearing.

Clearing Causes and Diagnostic Codes
A virtual circuit may be cleared by a Packet Switched Data Network (PSDN), by PRIMENET,
or by either of the two processes controlling it. The reason for clearing appears in the second
word of the virtual circuit status array. The high-order byte of this word is the clearing cause and
the low-order byte is the diagnostic code.
X.25 defines several network-generated clearing causes. These are listed below.

0 DTE Originated (Standard Diagnostics used)
1-127 Public Network Originated
128 DTE Originated (Nonstandard Diagnostics used)
129-191 Private Network Originated
192-255 Gateway Originated (gateway between public networks)

2-4

Ports and Virtual Circuits

The clearing cause is most likely one of the CC$xxx codes listed Appendix C. If the clearing
cause is CC$CLR, the circuit was cleared by either PRIMENET or a user process (DTE-
originated). PRIMENET currently clears all calls with a clearing cause of zero (CC$CLR), except
in the following three situations:

• When a reverse charge call is not allowed (CC$GRN)
• When there is insufficient memory for the Route-through Server to execute its

protocol (CC$GCN)
• When the Route-through Server detects an error it cannot recover from without

clearing the circuit (CC$GPE)
If you are writing applications that do not conform to ISO standards, use a clearing cause of 128
and nonstandard diagnostics if your PSDN allows. If you want to use a clearing cause of zero,
then use diagnostic codes from 128 through 143.
When a call is cleared explicitly with XCLR/XFCLR/XLCLR, the clearing user process may
specify the value of the diagnostic code in the why argument. Communicating processes may use
this facility to describe fatal error conditions or to supply final status information. The list of
status codes that may be written into the first word of the virtual circuit status array appears in the
sections on X$CONN/X$FCON/X$SCON/XLCONN and X$ACPT/X$FACP/X$SACP/
XLACPT in Chapter 4, IPCF Subroutines.

2-5

IPCF Programming Principles

This chapter elaborates some of the techniques and principles of IPCF programming. The
following topics are discussed:

Front-end principles
Server principles
Storage of variables
Performance issues
The Fast Select facility
Window and packet sizes in virtual circuits (throughput)
Network event waiting
Checking return codes
The virtual circuit status array
Defining message protocols
Virtual circuit clearing
Program closedown
The effect of START_NET and STOP_NET on IPCF programs

Front-end Principles
A good front-end program should

• Always keep the user who runs the program updated on communication progress
• Ensure that anyone running the program cannot cause malfunction of the server

Thus, the front-end program should recognize and handle situations such as the unavailability of a
server, downtime on the remote system, and unexpected resets and clear requests during message
exchanges. In addition, the front-end program should use a condition handler to clear
unterminated virtual circuits left alive when the program has been aborted.

3-1

Programmer's Guide to Prime Networks

Server Principles
There are two models for the design of network servers: single-threaded and multi-threaded. The
single-threaded server assigns its port for one call request each time and reassigns the port after
completing a transaction. You can run a single instance of the single-threaded server when the call
will not be open for a long time. Or, you can run multiple instances of a single-threaded server.
Multiple single-threaded servers all assign the same port, and they handle incoming call requests
in rotation. This is described in detail in the section on X$ASGN/XLASGN in Chapter 4, IPCF
Subroutines. In contrast, a multi-threaded server assigns one or several ports for all calls, and
regularly scans for new incoming calls.
Whichever design you use, there is a limit to the number of active requests, limited by either the
parallel capacity of the multi-threaded server, or by the number of running single-threaded
servers. Each server design must take into account what to do with additional calls when all
servers, or all slots within a multi-threaded server, are in use. Either additional calls can be
cleared, or they can be ignored until a server becomes free or the incoming call times out.
A convenient solution to this problem is to run a special server that assigns the common server
port for an infinite number of calls at the end of the assign queue. The description of X$ASGN/
XLASGN in Chapter 4, IPCF Subroutines, explains how to make this assignment. This special
server is called only if no other server is available. Its sole action is to transmit the message, No
server available and to clear the call.

Single-threaded servers are easier to design and maintain because they do not need any internal
task-switching code and require only one set of state information. However, for synchronization
or because resources are scarce on your machine, you may prefer to use a multi-threaded server.
A well-designed server should be stable if it encounters errors. Preferably it should not crash but
rather reinitialize itself and reenter service. The condition-handling mechanism of PRIMOS®
should be used to catch and properly handle forced logouts and similar events. The server also
should create a log file so that problems can be analysed later.
An application based on multiple servers must be designed to be independent of user-specific
properties, such as the local user number of the server. The reason is that one can never know
which server is used for a specific transaction.

Storage of Variables
Most IPCF routines have status return arguments that are updated to indicate a completed network
operation (for example, transmit completed). PRIMENET updates status arguments both at return
to the immediate caller and at later times. Such variables must remain stable during program
execution. In particular, a status variable should not reside in the stack of a subroutine that returns
to a caller before the status update is completed. If the stack area is used by another routine, the
first return variable will overwrite the stackframe. Such errors are extremely difficult to trap
because they are difficult to reproduce.

3-2

IPCF Programming Principles

Thus, you should store an updated variable in an area of memory that is relatively stable — that
is, an area that will not be deallocated as long as the program needs the value. For example, you
can store a variable in the stack, provided that the stackframe in which the variable resides is not
released. Thus, the routine in which you allocate this variable must not return and release the
stackframe until PRIMENET is finished with the variable, or the request for the argument or call
logically ends.
The program fragments provided below show correct and incorrect methods of storing variables.
Refer to Chapter 4, IPCF Subroutines, for descriptions of the IPCF parameters appearing in these
fragments.

Example 1: Incorrectly Storing a Variable
A program using the following BAD_XMIT function may encounter difficulties because the
arguments to X$TRAN are stored in the stack, while the function returns immediately to the
caller, freeing that stack frame. If the request does not receive an immediate response, the
network server may return later and find that some other routine has been called after
BAD_XMIT and is using the same stack frame for a different purpose. In this case, the network
server sends 65 bytes of the wrong data.

INTEGER FUNCTION BAD_XMIT (VCID)
EXTERNAL X$TRAN
INTEGER VCID, MESSAGE_STATUS
CHARACTER*71 XMIT_MESSAGE

$INSERT SYSCOM>X$KEYS.INS.FTN

C End of Declarations

XMIT_MESSAGE = 'Information on the stack could be overwritten.'

1000 CALL X$TRAN (VCID, XT$LV0, XMIT_MESSAGE, 71, MESSAGE_STATUS)
BAD_XMIT = MESSAGE_STATUS
RETURN
E N D / * F U N C T I O N B A D _ X M I T * /

3-3

Programmer's Guide to Prime Networks

Example 2: Correctly Storing a Variable in the Stack
The following function works correctly. Although the arguments to X$TRAN are in the stack
(and therefore disappear when the function returns from the routine), the network software is
finished with the variables by the time the function returns.

INTEGER FUNCTION XMIT_MSG (VCID)
EXTERNAL X$TRAN, X$WAIT, SLEEP$

INTEGER VCID,
X M E S S A G E . S T A T U S

CHARACTER*32 XMIT MESSAGE

/* from previous X$CONN/X$ACPT */

$INSERT SYSCOM>X$KEYS.INS.FTN

End of Declarations

XMIT_.MESSAGE = 'This one works, because i t wa i ts '
1000 CALL X$TRAN (VCID, XT$LV0, XMIT_.MESSAGE,. 32, MESSAGE_STATUS)
2000 GOTO / * ANALYZE RESULT

X 2100, / * XS$NET: net down
X 2300, / * XS$CMP : o p e r a t i o n c o m p l e t e
X 2200, / * XS$ IP : o p e r a t i o n i n p r o g r e s s
X 2100, / * XS$BVC: bad VC
X 2100, / * XS$BPM: bad paramete r
X 2100, / * XS$CLR: VC cleared
X 2400, / * XS$RST: VC Reset
X 2400, / * XS$ IDL : VC idle (?)
X 2100, / * XS$UNK: address unknown (?)
X 2500, / * XS$MEM: i n s u f fi c i e n t b u f f e r s
X 2100, / * XS$NOP: no call reqs pending (?)
X 2100, / * X S $ I L L : o p e r a t i o n i l l e g a l
X 2100, / * XS$DWN: node down (?)
X 2500, / * XS$MAX: max requests made
X 2100, / * XS$QUE: assign queued (?)
X 2100 / * XS$FCT: i l l e g a l f a c i l i t y (?)
X) MESSAGE._STATUS + 2

2100 CONTINUE / * s o m e t h i ing went wrong
XMIT._MSG = MESSAGE..STATUS
RETURN

2200 CONTINUE / * n o t h i n g happened yet
CALL X$WAI1' (0) / * s leep unt i l someth ing happens
GOTO 2000

2300 CONTINUE / * Success
XMIT._MSG = MESSAGE..STATUS
RETURN

3-4

IPCF Programming Principles

2400

2500

CONTINUE
GOTO 1000
CONTINUE
CALL SLEEP$
GOTO 1000
END

(ooiooo:

/* reguest was flushed:
/* wef11 have to send it again
/* temporary blockage:
/ * s l e e p ,
/* and try again
/* FUNCTION xmit_msg

Example 3: Storing a Variable in a Static Area
The following STATXMIT routine functions correctly because the storage is statically allocated.
The caller must be careful not to reuse the same storage for another purpose (for example, calling
STATXMIT again) before the network software is finished with the original contents. To detect
this condition, check the value of MESSAGE_STATUS as it was checked in XMIT_MSG, in
Example 2.

SUBROUTINE STATXMIT (VCID)
INTEGER VCID, MESSAGE_STATUS
EXTERNAL X$TRAN
CHARACTER*48 XMIT_MESSAGE
COMMON /XMITMSG2/MESSAGE_STATUS, XMIT_MESSAGE

$INSERT SYSCOM>X$KEYS.INS.FTN
C End of Declarations

XMIT_MESSAGE = 'This works because the arguments are static'
CALL X$TRAN (VCID, XT$LV0, XMIT_MESSAGE, 48, MESSAGE.STATUS)
RETURN
E N D / * S U B R O U T I N E S T A T X M I T

For further information, refer to the Program Closedown sections later in this chapter, and to the
descriptions of XCLR/XFCLR/XLCLR in Chapter 4, IPCF Subroutines.

Performance Issues
Although the IPCF interface to PRIMENET functions independently of transmission media such
as RINGNET™ or PSDN synchronous links, throughput varies greatly between these media. An
application that runs well over RINGNET, due to the very high throughput over the ring, may
turn out to be very slow over a synchronous line. In general, application designs should

• Minimize the amount of data transferred over the network
• Use as few messages at the user level as possible
• Use as few protocol turnarounds (when one of the programs has to wait for the other

to send a message back before it can proceed) as possible

3-5

Programmer's Guide to Prime Networks

The message transfer structure of X$TRAN and X$RCV makes the partitioning of messages into
proper X.25 protocol data packets invisible for the application programmer. However, each
message that is handed to X$TRAN will be packetized inside PRIMENET. Thus, you may be
able to improve performance by making the message size match the packet size of the virtual
circuit, or integer multiples thereof.
You should ensure that your application always provides sufficient buffer space to handle
incoming data. Further, you can optimize program performance by specifying a large window and
packet size for the virtual circuit. A large packet size may reduce overhead, since fewer packets
have to be analyzed and handled. The larger window size allows PRIMENET to have more
packets outstanding, reducing the time interval between them. This is particularly important over
slower media. For specific information about how to control window and packet sizes, refer to
Appendix A, X.25 Programming Guidelines.

The Fast Select Facility
PRIMENET supports the X.25 Fast Select facility. This facility allows you to transmit a limited
amount of user data in the packets that set up a virtual circuit.
For example, suppose you want the process that initiates a call to identify itself to the receiving
system for purposes of validation. To save time, you might want this validation to occur while the
call is being established, rather than afterwards. With the Fast Select facility, you could arrange
for the initiating system to include an identifying string with its call request. The receiving system
could then include an acknowledgment of that string when it accepted the call. By the time the
call was established, the process of validation would be over. On the other hand, if the initiating
system omitted the string or sent the wrong one, the receiving system could assume that the call
was invalid and prevent its completion.
In general, the Fast Select facility is most useful when you need to exchange only a small amount
of data. As in the example above, this small data exchange could be used to determine whether a
lengthier conversation is required.
The subroutine descriptions in Chapter 4, IPCF Subroutines, include the information you need to
use the Fast Select facility. Routines whose names begin with X$F are defined specifically for
Fast Select. For an example of an application that uses Fast Select, refer to Chapter 5, IPCF
Programming Examples. Fast Select is fully defined in the X.25 standard.

Network Event Waiting
One essential feature of IPCF applications is their asynchronous nature. Your user program
initiates data transfers and other network activities, but returns from many of the IPCF
subroutines immediately after the request is launched, rather than after it completes. This is to
your advantage. Your program can perform other functions while PRIMENET is performing
tasks for your application.

3-6

IPCF Programming Principles

r

An IPCF subroutine may return a status code immediately after a request is made. In some cases,
this status code may indicate a serious error or an inability to initiate the requested action. For
example, a status code of XS$BPM means that your call arguments contain illegal values. The
return code XS$MEM indicates work contention inside your local PRIMENET, meaning that
PRIMENET has temporarily run out of buffers.
An IPCF subroutine may also have returned a status code at a later time — for example, after a
request has completed, or when some other network action has occurred. When updating a status
array, the subroutine also notifies the process' network semaphore. Your program, when idle, can
wait on its network semaphore. When the semaphore is notified, the program can check the status
arrays to find out what has happened. To wait on its network semaphore, your program calls the
X$WAIT routine. You can use a combined timeout/network-event wait. The returned function
value indicates whether the program woke up on timeout or on an actual event.

Semaphores, which are discussed in the Subroutines Reference Guide, Volume III, usually include
event counters that monitor the number of waiting processes or events to be handled. PRIMENET
uses a different principle. It generates only one collective notification for all your network events,
until you wait on the semaphore again by invoking X$WAIT. This method avoids the problem of
overnotification in case the IPCF user program does not wait on the semaphore. Therefore, if
your application has several outstanding network requests (such as multiple supplied receive
buffers) you should check the status for all of them before waiting again on the network
semaphore, or your program might hang because the notify had already taken place.
Once a virtual circuit has passed into data transfer phase, there are no timeout mechanisms inside
PRIMENET for an idle circuit with no data to transfer. If one side issues X$RCV, followed by an
infinite wait for the other end to respond, and the other end crashes without clearing the virtual
circuit before transmitting, the receiving side hangs. It would be better to have a long timeout
period and send the user a message about possible problems.

Checking Return Codes
Calls to X$CLRA and X$UASN/XLUASN always return without error; all other calls return with
(or affect the value of) a status word or array. The immediate-return design of the IPCF routines
implies that several return status values are reasonable. Normally, an IPCF application program
will have several code paths following each IPCF call.
For example, when an application has reached the data transfer phase and is manipulating a
number of calls to X$TRAN and X$RCV, the return statuses XSIP, XSCMP, possibly
XS$RST, and XS$CLR are all normal and must be handled. (For explanations of these codes,
refer to the descriptions of X$TRAN and X$RCV in Chapter 4, IPCF Subroutines.) Thus, the
application might contain a sequence of statements such as the following:

IF (returned_status .EQ. XS$xxx) GO TO yyy

In this case, you must use a local copy of returned status in the sequence of IF statements. This
guarantees that the branching is correct and is not upset by a sudden change of the returned status
value by PRIMENET during the testing. (The most common change would be the transition from

3-7

Programmer's Guide to Prime Networks

XS$IP to some other status, indicating that the operation terminated.) This technique is illustrated
in the following sample code.

50 CALL X$WAIT(10) /* Idle a while...
J = VCSTAT(l) /* Copy circuit status value.
IF (J .EQ. XS$IP) GOTO 50 /* Keep idling...
IF (J .EQ. XS$CLR) GOTO 10 /* OK to accept next call.
IF (J .EQ. XS$CMP) GOTO 50 /* Wait for clear.

VCSTAT(l) is copied into J, and the three comparisons are made against J, rather than
VCSTAT(l), ensuring that the value does not change between the tests.
The return code XS$BVC occurs when you order actions on a virtual circuit that you do not
control. It is usually a fatal error code, implying that your program is in error. However,
sometimes it also can be a normal (nonfatal) return code for calls to X$TRAN, X$RCV, and
XCLR/XFCLR/XLCLR. XS$BVC may be nonfatal if the virtual circuit has been cleared by
the other side or by the network after your last status test (which did not return XS$CLR), but
before your call to X$TRAN, X$RCV, or XCLR/XFCLR/XLCLR.
IPCF applications should always check the status array returned or affected by any IPCF
subroutine call. The following example shows some pitfalls that you can avoid.

NPORT = 3279
CALL X$ASGN(NPORT, 1, NSTAT)
CALL X$WAIT(0)

Because the port number 3279 is invalid, X$ASGN returns with the error XS$BPM in NSTAT.
The example fails to discover the error, and waits forever for a network event on an unassigned
port.

The Virtual Circuit Status Array
The virtual circuit status array, which is described in Chapter 2, provides processes with an easy
way to poll the state of their virtual circuits. A process that is managing many virtual circuits,
each with several data-moving operations in progress, need only poll the virtual circuit status
arrays for the completed status (XS$CMP) to see which circuits) are ready for more traffic.
PRIMENET will change the virtual circuit status from XS$IDL or XS$IP to XS$CMP to indicate
that it is ready for more data transfers.
Just as in the case of return codes, your application should take into account the possibility that
the virtual circuit status array may change between consecutive tests. PRIMENET may write into
the virtual circuit status array throughout the life of the virtual circuit. In addition, PRIMENET
data communication is handled by a special process, NETMAN, that is classified as user type
NSP. This process runs at high priority, and thus its activity might interrupt a program during its
execution. An interruption affects the program's handling of the virtual circuit status array (as

3-8

IPCF Programming Principles

well as of other returned status variables). As in the case of return codes, obtain a local copy of
the virtual circuit status array before doing repeated tests to ensure that the array remains
unchanged during the tests.

Defining Your Own Message Protocols
The goal of the X.25 protocol levels 2 and 3 is to deliver data in order and without errors.
However, there is always a slight possibility that the error recovery routines of levels 2 and 3 may
fail. Should this occur, the virtual circuit is reset.
Circuit resets can result in loss of data, because packets that are traveling in the network may
disappear. In most cases, you can detect a reset because uncompleted receive requests (calls to
X$RCV) return the status code XS$RST rather than XS$CMP. However, you may not be able to
detect a reset that occurs after the transmitting program sends data by means of X$TRAN but
before your program issues the corresponding call to X$RCV. No data is received, but X$RCV
does not know that a reset has occurred, and thus does not return a status of XS$RST. The only
way to detect the reset in this case is to check the virtual circuit status array. To avoid this
problem be sure that the receiving process calls X$RCV and establishes the receive buffer before
the transmitting process calls X$TRAN. This practice ensures that if a reset occurs after the data
is sent, the pending X$RCV call returns a status of XS$RST.
Some other methods of ensuring data integrity are

• Periodically send checkpoint messages that can be distinguished from normal data
messages. If a reset or other error occurs, you can begin resending any messages sent
since the last checkpoint message.

• Include a sequence number on each message.
• Pass length information with the X$TRAN message.

Virtual Circuit Clearing
The X.25 protocol states that when either side of a circuit requests to clear the circuit, packets in
transmission can either be delivered properly or be dropped. For this reason, the circuit should be
cleared by the side that receives the last message. If the transmitting side clears the circuit, the
receiving side may detect the clear before the last call to X$RCV. In this case, the last transmitted
message is dropped. This problem can occur even if the transmitting side refrains from clearing
the circuit until the last call to X$TRAN returns a status of XS$CMP.

3-9

Programmer's Guide to Prime Networks

Program Closedown
When you design the termination of an IPCF application, be sure to consider the following
important points:

• When you have assigned ports for receiving incoming calls, make sure that you call
either X$UASN/XLUASN or X$CLRA to release these ports. Otherwise, these ports
will remain assigned for you, routing incoming calls to you and preventing other
applications from using them to receive calls.

• As long as you have a running virtual circuit on which you have sent a clear request
(by calling X$CLR or any corresponding routine), PRIMENET will write into your
virtual circuit status array to indicate that the remote end has confirmed the clear
request. To prevent overwriting of other programs that may be executed later, you
should not CALL EXIT or return to command level until one of the following has
occurred:

o All virtual circuit status arrays' first words have changed to XS$CLR, indicating
that all clear requests are confirmed.

o You have called X$CLRA, which forces an immediate drop of all your virtual
circuit references, including any nested EPFs. (PRIMENET will still handle the
clear confirmation properly.) The call to X$CLRA will generate a clear request
with diagnostic byte 0 if the circuit has not already been cleared.

Note
If you request a clear immediately for an incoming call,
without first accepting it, no virtual circuit status array is
created, so you do not need to wait for confirmation.

The Effect of START.NETand STOP_NET
on IPCF Programs
Your IPCF application should provide for events that occur when the network is stopped via
STOP_NET or started via START_NET. This consideration is especially important for servers
mnning as phantoms on nodes that execute STOP_NET.
When NETMAN is stopped, active virtual circuits are cleared — an event that is indicated by the
Prime-defined clearing diagnostic, CD$NSV. When an IPCF application receives this clearing
diagnostic, either its local NETMAN or the remote node's NETMAN has been closed down.
A user program that has assigned a port and is waiting for an incoming call on its network
semaphore is notified when the network is stopped. The normal action for the program is to call
X$GCON/X$FGCN/XLGCON/XLGC$ to find out about the supposedly incoming call. The
returned status will be "Networks not configured", which will indicate to the program that
STOP NET has been executed.

3-10

IPCF Programming Principles

r

When START_NET is later invoked, the local network configuration database is reinitialized, and
all previous port assignments are nullified. START_NET does not notify waiting processes that
this has occurred. Therefore, if your application failed to detect that STOP_NET was issued, it
might continue to wait on its network semaphore, assuming its old port assignment, which would
no longer be in place. In that case, the program would be left hanging. The system operator
should keep track of IPCF servers waiting for incoming calls, and make sure they are properly
restarted in connection with STOP_NET and START_NET activity.
The "Network not running" status, XS$NET, is returned only by IPCF routines that initiate
network connections, such as X$ASGN, X$CONN/X$FCON/XLCONN, and X$GCON/
X$FGCN/XLGCON/XLGC$, and by the status routine X$STAT. Other routines combine this
status with XS$BVC, which is also returned if you require an action for a virtual circuit that does
not belong to you.

3-11

IPCF Subroutines

This chapter describes the subroutines that make up the Prime Interprocess Communications
Facility (IPCF), and is divided into four parts:

• IPCF overview
• Naming conventions
• Summary of subroutines
• Subroutine descriptions

This chapter assumes that you understand basic network programming concepts, ports, and virtual
circuits.

IPCF Overview
Each IPCF subroutine has a simple form (the short form) with a short parameter list. Most
routines also have a long form with a larger number of parameters. The short forms can be used
without a detailed knowledge of X.25 protocol. The information you need to use the short forms
is contained in this chapter.
The long forms allow you to use X.25 functionality more fully and are most useful in handling
connections to non-Prime systems. To use the long forms, you must know the X.25 protocol and
understand the basic concepts of network programming. Appendix A, X.25 Programming
Guidelines, contains additional information about the X.25 protocol.

Note
Read the Restrictions section of Appendix A before using the long
forms of the IPCF subroutines.

Naming Conventions
Each IPCF subroutine name begins with one of the following prefixes:

• X$
• X$F

4-1

Programmer's Guide to Prime Networks

• X$S
• XL

The X$ prefix indicates a short form or a subroutine that has only one form. For example, there is
only one wait subroutine, X$WAIT; on the other hand, X$CONN is the short form of the call
request subroutine.
The X$F prefix indicates a short-form subroutine tailored for the Fast Select facility. For
example, X$FCON is the Fast Select version of the call request subroutine.
The X$S prefix designates a short-form subroutine that has included the KEY argument from the
long form of the subroutine. This is used to accommodate an added value to the current KEY
options.
The XL prefix indicates a long form subroutine. For example, XLCONN is the long form of the
call request subroutine.

Summary of IPCF Subroutines
The IPCF subroutines listed below can be called by any application that runs as a V-mode or
I-mode program. To load the IPCF library into your program, use the LI VNETLB subcommand
with BIND or SEG. The definitions of key and error codes for FORTRAN, PL/I, and
Pascal are kept in the SYSCOM>X$KEYS.INS.FTN, SYSCOM>X$KEYS.INS.PLl, and
SYSCOM>X$KEYS.INS.PASCAL files, respectively. The SYSCOM>X$KEYS insert file
is kept for compatibility with old program source files. It is a copy of the
SYSCOM>X$KEYS.INS.FTN file. Programmers using other languages must create their own
versions of these files.

Subroutine
X$ASGN
XLASGN
X$CONN
X$SCON
X$FCON
XLCONN
X$GCON
X$FGCN
XLGCON
XLGC$
X$ACPT
X$FACP
XLACPT
XLGA$
X$TRAN
X$RCV

Function
Assigns a port either by number or by specifying a mask that traps in
coming calls
Requests a virtual circuit connection

Provides information about incoming calls

Accepts a connection request to complete a connection

Provides information about Call Connected packets
Transmits a message
Prepares for receiving a message

4-2

IPCF Subroutines

X$CLR
X$FCLR
XLCLR
XLGI$
X$UASN
XLUASN
X$WAIT
X$CLRA
X$GWC
XLGVVC
X$STAT
X$RSET

Gears a virtual circuit connection

Provides information about cleared calls
Deassigns a port

Does a timed wait for the next network event completion
Clears all active virtual circuits and deassigns all ports
Passes control of a virtual circuit to another application process

Returns various status information related to PRIMENET
Resets a virtual circuit

Subroutine Descriptions
This section describes the IPCF subroutines in detail. The subroutines are grouped functionally
and are presented in the logical calling order listed above.

Note
The integer default is INTEGER*2 in FTN and INTEGER*4 in F77.
To avoid incorrect results, declare all integers explicitly. All integer
arguments to these routines are INTEGER*2.
PL/I programmers should combine the components of key with a
logical OR rather than adding them. FORTRAN programmers should
add them.

4-3

Programmer's Guide to Prime Networks

Subroutine: X$ASGN XLASGN
Description: Assigning a Port
To receive incoming network connection requests, an application must assign one or more of the
available network ports. Each call to XSASGN or XLASGN assigns one port to the calling
process. Once a port is assigned to a process, each incoming connection request specifying that
port is directed to the connection request queue of the process. The process may read the queue
by calling the X$GCON, X$FGCN, or XLGCON subroutine. As many as 255 port assignments
may be made.

Note
The limit of 255 port assignments is a limit that applies to each
system. Remote login uses two port assignments and each configured
slave process uses one port assignment. This limit need concern only
large systems that have both many slave processes and many processes
receiving incoming network connection requests.

The X$ASGN subroutine is adequate for most port assignments. The XLASGN subroutine
creates an extended port assignment. Extended port assignments may be made by network servers.
Network servers are spawned from the supervisor terminal or other privileged processes by
invoking the STARTJNSR command:

START_NSR server.comi -USERJD server_name

If a process requests a port legally, PRIMENET assigns the port unless the buffer space is
insufficient. PRIMENET puts multiple requests for the same port in a first in/first out queue.
When the process at the head of the queue deassigns the port (see X$UASN/XLUASN), the next
process waiting in queue for the port begins receiving incoming connection requests.
The assigning process may request automatic deassignment of a particular port after a specified
number of connection requests are directed to the port. The count argument in the X$ASGN or
XLASGN call is used to request automatic deassignment. If count is a positive integer,
PRIMENET removes the assigning process from the port after processing count connection
requests for the port. The assigning process must assign the port again to reenter the queue. A
count of 0 prevents automatic deassignment.
A count of-1 causes the assignment request to be placed and kept at the back of the assignment
queue for the specified port. PRIMENET queues ahead of this request any process that calls
X$ASGN or XLASGN and has a nonnegative count. A process with a count of -1 handles a
request only when no other processes are available. The process with the count of-1 returns to the
bottom of the queue when another process with a nonnegative count assigns the specified port.
If more than one process with a count of-1 assigns the same port, only the first handles bottom-
of-queue requests, until it deassigns itself or logs out. At that time, the next process with a count
of -1 assumes the bottom-of-queue position.
For example, suppose several server processes, each with a count of 1, assign one port. Each
process handles a single request for service, and is immediately deassigned, allowing the next

4-4

IPCF Subroutines

incoming request to be taken by the next server in the queue. An error-handling process is given a
count of -1 and sits at the bottom of the queue. When no server process is available, the error
handler takes the incoming requests.
If one process makes two successive calls to X$ASGN or XLASGN with the same port, the count
of the queued first assignment request call is replaced by the count of the second. The position of
the request in the assignment queue remains unchanged.
In the case of an extended assignment (a call to XLASGN), calls are trapped by a combination of
the Called Address Extension, Protocol ID, and/or User Data fields supplied in the call. The
particular combination is specified in the key argument.
The call syntax for XLASGN follows the call syntax for X$ASGN.
Call syntax

CALL X$ASGN(port, count, status)

Arguments

port
INTEGER*2. (INPUT). The number of the port to be assigned. 0 through 99 for unprivileged
processes; 0 through 255 for privileged processes.

count
INTEGER*2. (INPUT). If greater than zero, specifies the number of incoming requests to be
directed to the assigning process before automatic deassignment. If zero or -1, the port
assignment remains in force until manually removed by XLUASN or X$UASN, or until the
user calls X$CLRA or issues the ICE command. If -1, the assignment is placed after all
previous assignments of the same class with a nonnegative value of count.

status
DSfTEGER*2. (OUTPUT). The returned status of the call. The following status codes may be
returned by a call to X$ASGN or XLASGN:

XS$BPM At least one of the parameters (port or count) specified in the call is
not in the legal range.

XS$CMP The assign request has been successfully placed at the front of the
assign queue for the specified port.

XS$MEM No system resources are currently available for more assign requests.
XS$NET Networks are not configured for this system.
XS$ILL Either a privileged key has been supplied by a nonprivileged user or

you have assigned an invalid port number.
XS$QUE The assign request is behind at least one other identical request. For

X$ASGN, this means that this port is behind request(s) by other users.

4-5

Programmer's Guide to Prime Networks

Note
The calling sequence for the routine XLASGN is not consistent with
the other IPCF routines. The arguments that are normally FORTRAN
arrays of characters or PL/1 character nonvarying strings are PL/1
character varying strings for XLASGN.
To call XLASGN from FORTRAN, you must build a data structure
that is interpreted as a character varying string, that is, a 16-bit length
field followed by an array of characters. For example, the prid
argument is defined as CHAR(4)VAR. The equivalent FORTRAN
declaration is INTEGER*2 PRID(3), with PRID(l) set = 4, and
PRID(2) and PRID(3) holding the four bytes of the prid field. To pass
a value of 999912341234 in the tadr field, declare INTEGER*2
TADR(9), and set TADR(l) = 12 and put the characters
999912341234 in TADR(2) through TADR(7).

Call syntax

DCL XLASGN ENTRY(BIT(16), CHAR(15)VAR, CHAR(15)VAR, CHAR(4)VAR,
CHAR(128)VAR, FIXED BIN(15), CHAR(41)VAR, FIXED BIN(15),
FIXED BIN(15), FIXED BIN(15),VFIXED BIN(15));

CALL XLASGN ENTRY(key, tadr, tsadr, prid, udata, port, txadr, rsvdl,
rsvd2, rsvd3,istatus);

Arguments

key
INPUT. Structure as defined below, an overlay for bit(16).

DCL 1 key,
2 mbz bit(6), /* not used, must be 0 */
2 daxr bit(l), /* XK$DAX: select on called addr extn */
2 flush bit(l), /* XK$FLU: remove all port assignments;

not used for XLASGN */
2 dadr bit(l), /* XK$DAD: select on address prefix */
2 dasr bit(l), /* XK$DSA: select on address suffix */
2 dprid bit(l), /* XK$DPR: select on prid */
2 dudata bit(l) /* XK$DUD: select on user data */
2 dport bit(l), /* XK$DPO: select on port number */
2 mbz2 bit(l), /* not used, must be 0 */
2 dme bit(l), /* XK$DME: select only calls to local node */
2 mbz3 bit(l); /* not used, must be 0 */

Specifies which incoming calls are to be returned. Formed from the parts listed below. Some
parts are required and others are optional, as indicated in the list. With the exception of
XK$DME and XK$DPO, the parts may be supplied by privileged processes only.

4-6

IPCF Subroutines

One of the following parts is required

XK$DAD

XK$DME

Optional part is

XK$DSA

Returns incoming calls whose Called Addresses start with the digits
specified in tadr and are not among the X.25 addresses configured for
this node
Returns incoming calls whose Called Addresses are among the X.25
addresses configured for this node

Returns incoming calls whose Called Addresses end in tsadr and
whose remaining digits comply with the XKDME/XKDAD
specification

You can also use the optional parts described below. You can use any one of them
individually, or XK$DPR and XK$DUD together.

XK$DAX

XK$DPO

XK$DPR

XK$DUD

Returns incoming calls when the Called Address Extension facility is
present and when the value of the Called Address Extension begins
with txadr
Returns incoming calls whose port numbers are port (and that do not
have a Called Address Extension facility present)
Returns incoming calls whose Protocol ID fields begin with prid (and
that do not have a Called Address Extension facility present)
Returns incoming calls whose User Data fields begin with udata (and
that do not have a Called Address Extension facility present)

tadr

INPUT. Holds a char varying string of ASCII digits, the Called Address prefix. Used only if
key includes XK$DAD.

tsadr
INPUT. Holds a char varying string of ASCII digits, the Called Address suffix. Used only if
key includes XK$DSA.

prid
INPUT. Holds a char varying string of bytes, the Protocol ID field. If both prid and udata are
supplied, then the length of prid must be 4. Used only if key includes XK$DPR.

udata
INPUT. Holds a char varying string of bytes, the User Data field. The maximum length is 12 if
the prid argument is supplied, and 16 otherwise. Used only if key includes XK$DUD.

4-7

Programmer's Guide to Prime Networks

Note
If both XK$DUD and XK$DPR are used, then prid and udata are
concatenated at runtime. If only XK$DUD is supplied, then the User
Data field is assumed to include the Protocol ID field.

port
INPUT. The number of the port to be assigned. 0 through 99 for unprivileged processes; 0
through 255 for privileged processes. Used only if key includes XK$DPO.

txadr
INPUT. Holds a string of bytes, the Called Address Extension prefix to use in the search. Used
only if key includes XK$DAX.
Supply the Called Address Extension prefix in binary-coded decimal, using a maximum of 41
BCD digits. The first digit has the following meaning:

0 Full OSI NSAP Address
1 Partial OSI NSAP Address
2 Non-OSI NSAP Address
3 Reserved by ISO

The remaining digits may take any value from 0 through 9.

rsrvdl
Reserved for future use. Set to 0.

rsrvd2
Reserved for future use. Set to 0.

rsrvd3
Reserved for future use. Set to 0.

count
INPUT. If greater than zero, specifies the number of incoming requests to be directed to the
assigning process before automatic deassignment. If zero or -1, the port assignment remains in
force until manually removed by XLUASN or X$UASN, or until the user calls X$CLRA or
issues the ICE command. If -1, the assignment is placed after all previous assignments of the
same class with a nonnegative value of count.

status
OUTPUT. The returned status of the call.
The following status codes may be returned by a call to X$ASGN or XLASGN:

XS$BPM At least one of the parameters specified in the call is not in the legal
range.

4-8

IPCF Subroutines

XS$CMP

XS$MEM
XS$NET
XS$ILL

XS$QUE

The assign request has been successfully placed at the front of the
assign queue for the specified port.
No system resources are currently available for more assign requests.
Networks are not configured for this system.
Either a privileged key has been supplied by a nonprivileged user or
you have assigned an invalid port number.
The assign request is behind at least one other identical request. For
X$ASGN, this means that this port is behind request(s) by other users.

4-9

Programmer's Guide to Prime Networks

Subroutine: X$CONN X$SCON X$FCON XLCON
Description: Requesting a Call
Any of the call-requesting subroutines initiates the establishment of a virtual circuit. The
application supplies a virtual circuit status array (the vcstat argument). The result of the call
request is returned into this virtual circuit status array. Normally, this call request status changes
with time as the call progresses. The call request subroutine also returns a virtual circuit ID
(VCID) that is to be used with all subsequent IPCF subroutine calls related to this virtual circuit.
To make a call request, the caller must specify the target node. For short form routines, only
configured node names can be used. The long form routine (XLCONN), however, permits
numeric addresses as well as node names.

X$CONN, the short form routine, is intended to initiate a connection to another PRIMENET
application that is executing on any other Prime node in the network.
X$SCON, an extended short form routine that permits a process on either end of a virtual circuit
(as the receiver) to control the flow of data from the other end (the sender).
X$FCON, the short form for Fast Select, adds the capability of sending the call User Data field
and retrieving called or clear user data returned by the callee.
XLCONN, the long form routine, allows you to specify in detail each of the fields in a call
request packet. In addition, you can partially control which network paths are to be used, and
retrieve returned user data fields. Refer to Appendix A, X.25 Programming Guidelines, for
further information about X.25 facility fields.

Note
When PRIMENET is connected to a Packet Switched Data Network,
the agency controlling that network may impose restrictions on the use
of the fields in the Call Request packet.

Call syntax

CALL X$CONN(vcid, port, tadr, tadrn, vcstat)

CALL X$SCON(key, vcid, port, tadr, tadrn, vcstat)

CALL X$FCON(key, anskey, vcid, port, tadr, tadrn, udata, udatan,
vcstat, rudat, rudatn, rudabc)

CALL XLCONN(key, vcid, port, tadr, tadrn, fcty, fctyn, prid, pridn,
udata, udatan, vcstat [, rudat, rudatn, rudabc])

4-10

IPCF Subroutines

Arguments

key
INTEGER*2. Describes the form of the call and the physical paths to be allowed for the
connection. The key has six parts:

1. Address format can be one of the following:

XK$NAM tadr contains an ASCII PRIMENET node name. (This is the
default, so XK$NAM may be omitted.)

XK$ADR tadr contains an ASCII representation of the subscriber address.

2. Path specification

XK$ANY Any available network path OK
XK$LAN LAN300 path OK
XKK$PDN Path through packet network OK
XK$RNG RINGNET (PNC or PNC II) path OK
XK$RTE Route-through (gateway) path OK
XK$SYN Synchronous link path OK

Note
At least one path specifier must be present in the call.

3. Facility option request (used with XLCONN or X$SCON)

XK$FCT A default facilities field will be provided by PRIMENET,
appropriate for the connection type (RING, LAN300, or specific
PSDN). Not specified by X$CONN.

0 A default facilities field will be specified separately by the applica
tion, or will not be used. (The facilities field might be added by
your PSDN.)

Note
Do not use XK$FCT with X$FCON, since X$FCON supplies
its own facility field. If you do use XK$FCT with X$FCON,
the XS$BPM status code is returned.

4. Return data option (used only with XLCONN and X$FCON)

XK$RTD This key indicates that the optional return data arguments for the
Fast Select facility have been supplied.

4-11

Programmer's Guide to Prime Networks

5. Return extended Clear Packet option (used with XLCONN or X$SCON)

XK$RXC If this key is supplied, an incoming extended clear (that is, one that
contains user data or facilities) will not be confirmed until the user
calls a clearing routine, issues the ICE command, or logs out, or
until 100 seconds have elapsed. The application may obtain the
contents of an extended incoming Clear Packet by calling XLGI$.

6. The flow control option (used with X$SCON, X$FCON, or XLCONN)

XK$FCW If this key is supplied, it specifies that the flow control window
should be opened only by the amount that the user has posted
receive buffers.

anskey
INTEGER*2. For X$FCON (Fast Select calls) selects restricted response or not:

XK$ACC The callee may accept or clear the call.
XK$CLR The callee must clear the call.

vcid
INTEGER*2. Returned. The VCID to be used for this connection. Not valid when the
XK$CLR anskey is used with X$FCON.

port
INTEGER*2. The port assigned by the process that is the target for this connection request.
(Ignored if the prid argument is used.)

tadr
Array. Holds a string of bytes (char nonvarying in PL/I). This array contains the PRIMENET
node name of the target node, with a maximum of 6 characters. For XLCONN, combined with
XK$ADR, tadr holds the target node's subscriber address, with a maximum of 15 characters.

tadrn
INTEGER*2. The number of characters in tadr.

fcty
Array. Contains the bytes to go into the Call Request packet facilities field. (Ignored if fctyn is
0.)

fctyn
INTEGER*2. The number of bytes in fcty. Legal range is 0 through 109. (Must be 0 if
XK$FCT is used.) For connections to 1980 PSDNs or pre-Rev. 21.0 Prime systems, the
maximum legal value is 63.

4-12

IPCF Subroutines

r

prid
Array. A buffer that contains the four bytes to go into the Protocol ID field in the Call Request
packet. (Ignored if pridn is 0.)

pridn
INTEGER*2. The number of bytes in prid. Legal values are 0 and 4.

Note
If pridn is 0, PRIMENET uses the Protocol ID field, prid, to pass the
port specified in port. In this case, prid is used for a host-to-host
protocol format defined for PRIMENET. If pridn is 4, the application-
supplied bytes are used. In this case, the value specified in port is not
used.

udata
Array. A buffer that holds the bytes to go into the User Data field in the Call Request packet.
(Ignored if udatan is 0.)

udatan
INTEGER*2. The number of bytes in udata. Legal values are 0 through 12, except for Fast
Select calls, for which the range is 0 through 124.

vcstat
Two-word array, INTEGER*2. Returned. Used for the virtual circuit status array. The list of
returned virtual circuit status codes follows separately after the argument descriptions.
PRIMENET may write into the vcstat argument during the whole life of the virtual circuit. Be
sure vcstat is the correct data type.

The following three arguments are optional for X$FCON and XLCONN:

rudat

Array. To hold a string of bytes. Returned. This array receives returned User Data fields (if
present) from Call Accept and Clear packets, rudat is intended for use with Fast Select calls.
Note that the entire X.25 User Data field is returned here.

Notes
If both Call Accept and Call Clear user data are expected, use XLGA$
to fetch the Call Accept user data, since the clearing user data may
overwrite rudat before the application has finished processing rudat.
If vcstat is not the same before fetching the contents of rudat as after,
then overwriting may have occurred.
Pre-Rev. 21.0 Prime systems and 1980 PSDNs do not support use of
clear user data on established circuits.

4-13

Programmer's Guide to Prime Networks

rudatn
INTEGER*2. The maximum number of characters to be returned into rudat.

rudabc
ENTEGER*2. Returned. The actual number of characters returned into rudat.

Note
rudat and rudabc are only valid when the Call Request has completed,
that is, when vcstat equals either XS$CMP or XS$CLR.

The following codes
These codes may be

XS$BPM

XS$DWN

XS$FCT
XS$IP

XS$MAX

XS$MEM

XS$NET
XS$UNK

can be returned into the first word of the virtual circuit status array vcstat.
returned immediately on return from the call request subroutine.

One of the arguments to the call is missing, out of range, or in conflict
with other arguments.
The target node specified in tadr is currently unavailable through
PRIMENET.
Bad facility field supplied (XLCONN only).
The connection request (or data transfer) has been successfully
initiated. See XS$CMP.
This request exceeds the maximum number of virtual circuits allowed.
This error occurs if you run out of resources on the source node, or
when a PSDN limits then number of circuits allowed.
There is temporary buffer congestion in the local network. The system
currently does not have the resources required to process the request.
Retry the request later.
PRIMENET is not configured on this Prime system.
The target node specified in tadr is unknown (not configured) in the
network.

As a result of data transfers (network and remote user actions), the following codes may be
returned later:

XS$CLR

XS$CMP

The connection has been cleared and is no longer usable. If the con
nection was cleared by the network or the remote process (rather than
the local process), the second word of the virtual circuit status array
holds the clearing cause and diagnostic code. (Refer to Chapter 2, Ports
and Virtual Circuits, for information about clearing causes and diag
nostic codes.)
The connection attempt or a data transfer has successfully completed.

4-14

IPCF Subroutines

XS$MAX This request exceeds the maximum number of virtual circuits allowed.
This error occurs if you run out of resources on the source node, or
when a PSDN limits the number of circuits allowed.

XS$RST The virtual circuit has been reset. All operations in progress have been
aborted.

r

r
r 4-15

Programmer's Guide to Prime Networks

Subroutine: X$GCON X$FGCN XLGCON
Description: Finding Information About an Incoming Call
These subroutines return information about Incoming Call packets from the receiver's point of
view. Once a process has assigned a port, PRIMENET places all incoming call requests that
specify that port on a call request queue for the process. Because each PRIMENET process has
only one such queue, when a process has several ports assigned, the connection requests for each
of them are placed on this same queue in a first in/first out fashion.
A call to X$GCON, X$FGCN, or XLGCON copies information about the first call request on the
process's queue without dropping the request from the queue. The process should then dispose of
the pending connection by either accepting or clearing the call. Either action drops the pending
request from the call request queue. Requests not handled by the process in 100 seconds are
automatically cleared by PRIMENET. X$GCON is the short form subroutine, primarily for use
between Prime nodes.
X$FGCN is the short form subroutine for retrieving information for Fast Select calls. It gives the
name of the caller's node and the call User Data field. It also tells if the caller required restricted
response or not. (Fast Select calls that require restricted response must be cleared.)
XLGCON allows the caller to extract almost all of the fields in an X.25 Call Request packet.
Call syntax

CALL X$GCON(vcid, port, status)

CALL X$FGCN(key, anskey, vcid, port, fadr, fadrn, fadrbc,
udata, udatan, udatbc, status)

CALL XLGCON(key, vcid, port, fadr, fadrn, fadrbc, fcty, fctyn,
fctybc, prid, pridn, pridbc, udata, udatan,
udatbc, status)

Arguments

key
INTEGER*2. X$FGCN and XLGCON: Describes the format of the calling node name to be
placed into fa dr.

XK$NAM fadr will receive the ASCII PRIMENET node name.
XK$ADR fadr will receive the ASCII subscriber address.

anskey
INTEGER*2. Returned. For X$FGCN (Fast Select calls), selects restricted response or not.

XS$ACC The callee may accept or clear the call.
XS$CLR The callee must clear the call.
XS$NOT This is not a Fast Select call.

4-16

IPCF Subroutines

vcid
INTEGER*2. Returned. This vcid is to be used for all subsequent IPCF calls relating to this
virtual circuit.

port
INTEGER*2. Returned. The port to which this call request is directed.

fadr
Array. Holds a string of bytes (char nonvarying in PL/I). Returned. Receives either the
PRIMENET node name or the system address for the node at which this call originated.

fadrn
INTEGER*2. The maximum number of bytes fadr may receive.

fadrbc
INTEGER*2. Returned. The number of bytes returned into fadr.

fcty
Array. Returned. Holds a string of bytes (char nonvarying in PL/I). Receives a copy of the call
request packet facilities field. (Ignored if fctyn is 0.)

t ^ f c t y n
INTEGER*2. The maximum number of bytes the fcty buffer may receive.

fctybc
INTEGER*2. Returned. The number of bytes returned into fcty.

prid

r Array. Returned. Holds a string of bytes (char nonvarying in PL/I). Receives the bytes from thecall request packet Protocol ID field. (Ignored if pridn is 0.)

pridn
INTEGER*2. The maximum number of bytes prid may receive.

pridbc
INTEGER*2. Returned. The number of bytes returned into prid.

udata
Array. Returned. Holds a string of bytes (char nonvarying in PL/I). Receives the bytes from the
user data field of the call request packet. (Ignored if udatan is 0.)

r
r 4-17

Programmer's Guide to Prime Networks

udatan
INTEGER*2. The maximum number of bytes udata may receive.

udatbc
INTEGER*2. Returned. The number of bytes returned into udata.

status
Two-word array, INTEGER*2. Returned. Contains the returned status of the call.
The following status codes may be returned in the first status word.

XS$NOP No call requests pending.
XS$CMP Pending call request: return arguments are valid.
XS$BPM Invalid key argument in the call.
XS$NET Networks not configured.

The second status word is valid only when the first word has the value XS$CMP. The second
word may have a value of either 1 or 2. These codes are defined below.

1. A new incoming call request.
2. A transferred virtual circuit; refer to the section on X$GVVC/XLGVVC.

4-18

IPCF Subroutines

I Subroutine: XLGC$
Description: Finding Information About an Incoming Call
Like XLGCON, XLGC$ returns the contents of an Incoming Call packet received from the
remote node. However, XLGC$ has a key, XK$REG, that allows the application to mark a given
call as "seen" so that subsequent calls to XLGC$, XLGCON, X$GCON, or X$FGCN skip that
call and return information on the next call in the queue.
Call syntax

CALL XLGC$(key, vcid, port, gfi, vcn, cmnd, fadr, fadrn,
fadrbc, tadr, tadrn, tadrbc, fcty, fctyn, fctybc,
prid, pridn, pridbc, udata, udatan, udatbc, status)

^^ Arguments

key
INTEGER*2. Set to one of the following:

0

XK$REG

XK$SAV

Return details of the first call for this user that has not yet been either
answered or marked as already seen. Do not mark the call.
Return details of the first call for this user that has not yet been either
answered or marked as already seen. Mark the call as seen.
Same as XK$REG, but record status as the status vector for this circuit
until an accept call is made. This key is useful for programmers writ
ing servers.

Note
The status vector exists only from the time when XLGC$ is
called with the XK$SAV key until the time when a call is made
to accept a connection request through either X$ACPT, X$FACP,
X$SACP, or XLACPT.

vcid
INTEGER*2. Returned. VCID for this circuit.

port
EMTEGER*2. Returned. PRIMENET port number for this circuit.

gfi
INTEGER*2. Returned. X.25 GFI for this packet.

vcn
INTEGER*2. Returned. X.25 logical channel number for this circuit.

4-19

Programmer's Guide to Prime Networks

cmnd
ESfTEGER*2. Returned. X.25 command byte for this packet (always 11).

fadr
Array. Returned. Holds a string of bytes (char nonvarying in PL/I). Will contain the subscriber
address for the node at which the call originated.

fadrn
INTEGER*2. Maximum number of bytes fadr may receive. Addresses are a maximum of 15
bytes in length.

fadrbc
INTEGER*2. Returned. The number of bytes returned into fadr.

tadr
Array. Returned. Holds a string of bytes (char nonvarying in PL/I). Will contain the address for
the node to which the call is directed.

tadrn
INTEGER*2. Maximum number of bytes tadr may receive. Addresses are a maximum of 15
bytes in length.

tadrbc
INTEGER*2. Returned. The number of bytes returned into tadr.

fcty
Array. Returned. Holds a string of bytes (char nonvarying in PL/I). Receives a copy of the
Incoming Call facilities field. (Ignored if fctyn is 0).

fctyn
DSfTEGER*2. Maximum number of bytes that the fcty buffer may receive. The legal maximum
for facility fields is 109 bytes (or 63 bytes, for calls to 1980 PSDNs or pre-Rev. 21.0 Prime
systems).

fctybc
INTEGER*2. Returned. The number of bytes returned into fcty.

prid
Array. Returned. Holds a string of bytes (char nonvarying in PL/I). Receives the bytes from the
call request packet Protocol ID field. (Ignored if pridn is 0.)

4-20

IPCF Subroutines

r

pridn
INTEGER*2. 0 or 4. The maximum number of bytes prid may receive. Incoming Call packets
may have at most 128 bytes of User Data. Four bytes of User Data (the Protocol ID) are copied
into prid; the remaining bytes are copied into udata.

pridbc
INTEGER*2. Returned. The number of bytes copied into prid.

udata
Array. Returned. Holds a string of bytes (char nonvarying in PLA). Receives the bytes from the
user data field of the call request packet. (Ignored if udatan is 0.)

udatan
INTEGER*2. 0 to 124. The maximum number of bytes udata may receive.

udatbc
INTEGER*2. Returned. The number of bytes of user data copied into udata.

status
INTEGER*2. Returned. Normally contains the immediate return status of the call. If the
XK$SAV key is used, status is a two-word vector used to return circuit status dynamically until
an accept call is made.
The following status codes may be returned in the first status word.

XS$NOP No call requests pending.
XS$CMP Pending call request: return arguments are valid.
XS$BPM Invalid key argument in the call.
XS$NET Networks not configured.

The second status word is valid only when the first word has the value XS$CMP. The second
word may have a value of either 1 or 2. These codes are defined below.

1. A new incoming call request.
2. A transferred virtual circuit; refer to the section on X$GVVC/XLGVVC.

4-21

Programmer's Guide to Prime Networks

Subroutine: X$ACPT X$FACP X$SACP XLACPT
Description: Accepting a Call
After identifying a caller through a "get connection data" subroutine (X$GCON, X$FGCN,
XLGCON, or XLGC$), the called application either accepts or clears the connection. Any of the
call accept subroutines can be used to accept a connection request and complete the connection.
The status of the call is returned in the vcstat array. This virtual circuit status array is used
throughout the life of the virtual circuit.
X$ACPT is the short form of the subroutine, primarily for use between Prime nodes.
X$FACP is the short form of the subroutine intended for Fast Select call accepts, in which
returned user data is transferred within the Call Accept packet.
X$SACP is the short form of the subroutine that incorporates the key argument from the long
form.
XLACPT allows you to specify in detail the X.25 packet-level protocol Call Accept packet. This
long form may contain facilities, Protocol ID, and/or User Data fields.

Notes
When PRIMENET is connected to a Packet Switched Data Network,
the agency controlling that network may impose restrictions on the use
of the fields in the Call Accept packet.
The X.25 protocol only permits the transfer of called user data with
Fast Select calls.

Call syntax

CALL X$ACPT(vcid, vcstat)

CALL X$FACP(vcid, udata, udatan, vcstat)

CALL X$SACP(key, vcid, udata, udatan, vcstat)

CALL XLACPT(key, vcid, fcty, fctyn, prid, pridn, udata, udatan,
vcstat, rudat, rudatn, rudabc)

Arguments

key
INTEGER*2. Normally the key is zero, in which case the user may (but need not) supply
facilities. Four other parts are supported:

XK$FCT Indicates that PRIMENET should supply facilities appropriate to the
particular virtual circuit.

XK$RTD Indicates that clear user data may be expected from the initiator of the
circuit.

4-22

IPCF Subroutines

r

r

r
r

XK$RXC Indicates that extended Gear packets should be made available to the
user, who can retrieve them by calling XLGI$.

XK$FCW Indicates that the flow control window should be opened only by the
amount that the user has posted receive buffers.

vcid
INTEGER*2. The virtual circuit ID for this circuit. This value was obtained by a preceding call
to X$GCON, X$FGCN, XLGCON, or XLGC$. The value can be 1 through 255.

fcty
Array. Contains the bytes to go into the Call Accept packet facilities field. (Ignored if fctyn is
0.) Must not be used when key is set to XK$FCT.

fctyn
INTEGER*2. The number of bytes to be taken from fcty. Legal range is 0 to 109. (Must be 0
if XK$FCT is used.) For connections to X.25 1980 PSDNs or pre-Rev. 21.0 Prime systems, the
maximum legal value is 63.

prid
Array. A buffer that contains the four bytes to go into the Call Accept packet Protocol ID field.
(Ignored if pridn is 0.) If udatan is greater than zero and prid is not supplied by the
application, PRIMENET sets a default format for prid.

pridn
INTEGER*2. The number of bytes to be taken from prid. Legal values are 0 and 4. (The value
should be 0 for non-fast-select accepts through a PSDN.)

udata
Array. A buffer that holds the bytes to go into the User Data field of the Call Accept packet.
(Ignored if udatan is 0.)

udatan
INTEGER*2. The number of bytes to be taken from udata. Legal values are 0 to 12, except for
accepts on Fast Select calls, when the range is 0 to 124. (The value should be 0 for calls that
are not Fast Select through a PSDN.)

vcstat
Two-word array, INTEGER*2. Returned. Used for the virtual circuit status array. PRIMENET
may write into the vcstat argument during the whole life of the virtual circuit. Be sure vcstat is
the correct data type.

4-23

Programmer's Guide to Prime Networks

The following status codes may be returned in the first word of vcstat.

XS$BPM
XS$BVC

XS$FCT
XS$IDL

XS$ILL

XS$MEM

Invalid arguments in the call (X$FACP and XLACPT only).
The calling process does not control the virtual circuit specified by
vcid.
Bad facility field supplied (XLACPT only).
The operation was successful and the virtual circuit is now idle, await
ing data traffic.
The process tried to accept a virtual circuit that was not in the call
request pending state, or tried to accept a call set up for Fast Select
with restricted response.
There is temporary buffer congestion in the local PRIMENET node.
Retry the accept several seconds later.

If there is a need later to extract the User Data field from a remotely originated clear request,
then you must specify the key XK$RTD and supply the following additional arguments.

rudat
Array. To hold a string of bytes. Returned. This array receives returned User Data fields (if
present) from Clear packets. Intended for use with Fast Select calls. Note that the entire X.25
User Data field is returned.

Note
Pre-Rev. 21.0 Prime systems and 1980 PSDNs do not support use of
clear user data on established circuits.

rudatn
INTEGER*2. The maximum number of characters to be returned into rudat.

rudabc
INTEGER*2. Returned. The actual number of characters returned into rudat.
As a result of data transfers, actions in the network, or remote user actions, the following codes
may be returned later:
XS$CLR The connection has been cleared. The second word of the virtual cir

cuit status array is now the valid clearing cause or diagnostic code.
XS$CMP A data transfer operation has completed successfully.
XS$RST The virtual circuit has been reset. All operations in progress have been

aborted.

4-24

IPCF Subroutines

f Subroutine: XLGA$
Description: Finding Information About a Connected Call
XLGA$ returns the contents of a Call Connected packet received from the remote node in
response to an outgoing Call Request. Call this routine only when the status array set up by
XLCONN has been set to XS$CMP and before calling X$TRAN.
Call syntax

CALL XLGA$(key, vcid, port, gfi, vcn, cmnd, fadr, fadrn,
fadrbc, tadr, tadrn, tadrbc, fcty, fctyn, fctybc,
prid, pridn, pridbc, udata, udatan, udatbc, status)

Arguments

key
INTEGER*2. Unused. Set to 0.

vcid
EMTEGER*2. VCID for this circuit.

port
INTEGER*2. PRIMENET port number for this circuit.

gfi
INTEGER*2. X.25 GFI for this packet.

vcn
INTEGER*2. X.25 logical channel number for this circuit. This is not related to the VCID.

cmnd
INTEGER*2. X.25 command byte for this packet (always 15).

fadr
Array. Returned. Holds a string of bytes (char nonvarying in PL/I). Will contain the subscriber
address for the node at which the call originated.

fadrn
INTEGER*2. Maximum number of bytes fadr may receive. Addresses are a maximum of 15
bytes in length.

fadrbc
INTEGER*2. Returned. The number of bytes returned into fadr.

4-25

Programmer's Guide to Prime Networks

tadr

Array. Returned. Holds a string of bytes (char nonvarying in PL/I). Will contain the address for
the called node.

tadrn
INTEGER*2. Maximum number of bytes tadr may receive. Addresses are a maximum of 15
bytes in length.

tadrbc
INTEGER*2. Returned. The number of bytes returned into tadr.

fcty
Array. Returned. Holds a string of bytes (char nonvarying in PL/I). Will receive a copy of the
Call Accept facilities field. (Ignored if fctyn is 0.)

fctyn
INTEGER*2. Maximum number of bytes the fcty buffer may receive. The legal maximum for
facility fields is 109 bytes (or 63 bytes, for calls to 1980 PSDNs or pre-Rev. 21.0 Prime
systems).

fctybc
INTEGER*2. Returned. The number of bytes returned into fcty.

prid
Array. Returned. Receives the first four bytes of the User Data field from the Call Accept
packet. (Ignored if pridn is 0.)

pridn
INTEGER*2. 0 to 4. The maximum number of bytes prid may receive. Call Accept packets
may have at most 128 bytes of user data. Four bytes of User Data (the Protocol ID) are copied
into prid; the remaining bytes are copied into udata.

pridbc
INTEGER*2. Returned. The number of bytes copied into prid.

udata

Array. Returned. The buffer that will receive the User Data field from the Call Accept packet.
(Ignored if udatan is 0.)

udatan
INTEGER*2. 0 to 124. The maximum number of bytes udata may receive.

4-26

IPCF Subroutines

r udatbc
ENTEGER*2. Returned. The number of bytes of user data copied into udata.

status
INTEGER*2. Returned. Contains the immediate return status of the call.

The following status codes may be returned in the status word:

XS$CMP Operation complete.
XS$BVC User does not own the virtual circuit specified by vcid.
XS$ILL The circuit is not in the call established state. Either the virtual call has

not yet been accepted, or the virtual call has been cleared, or the user
has already transmitted some data using X$TRAN.

XS$NET Networks are not currently running.

4-27

Programmer's Guide to Prime Networks

Subroutine: X$TRAN
Description: Transmitting Data
X$TRAN is the IPCF transmit-message subroutine. An application calls X$TRAN to send the
contents of a buffer through the network to the process on the opposite end of a virtual circuit.
PRIMENET automatically splits the message into X.25 packets of appropriate size for
transmission, and then recombines the packets at the receiving end.
PRIMENET supports X.25's two data levels and interrupt procedure. When applications call
X$TRAN, they supply an argument level with one of three values (the
SYSCOM>X$KEYS.INS.XXX files have defined mnemonics for each value) to indicate one of
the following:

• A message (data packet sequence): Q-bit set to 0 (XT$LV0)
• A message (data packet sequence): Q-bit set to 1 (XT$LV1)
• An interrupt packet (XT$INT)

Both XT$LV0 and XT$LV1 are requests to move up to 32,767 (32K) bytes of data. The only
difference between them is their data level. PRIMENET passes the data level transparently
through the circuit to the receiver so that an application may distinguish between data messages
with the Q-bit values set differently. PRIMENET treats XT$LV0 and XT$LV1 data packets the
same way, handling data transmission requests of both types in a single queue in first in/first out
fashion.

Interrupt packets (XT$INT) are handled separately, in compliance with the X.25 packet-level
protocol. Each can carry up to 32 bytes of data; however, only a single byte of data is allowed
over links to pre-Rev. 21.0 systems or to PSDNs not using X.25 1984 protocol. The interrupt
packet is placed at the top of the queue ahead of all ordinary data packets. As a result, an interrupt
packet may arrive at its destination earlier than normal data sent before it. For the effect of
interrupts on the receiving side, see X$RCV.
Call syntax

CALL X$TRAN(vcid, level, buffer, bufbc, status)

Arguments

vcid
INTEGER*2. The VCID for this circuit.

level
INTEGER*2. The data level of this message is

XT$LV0 (0) For normal data packets with the X.25 Q-bit set to 0

XT$LV1 (1) For normal data packets with the X.25 Q-bit set to 1

XT$INT (2) For an interrupt packet

4-28

IPCF Subroutines

buffer

r

Any array. The data buffer to be moved through the virtual circuit. The buffer must not cross a
segment boundary.

bufbc
INTEGER*2. The number of bytes to copy from buffer, bufbc is 0 to 32767 except for
Interrupt packets. For Interrupt packets, bufbc is 1 to 32, except over links to pre-Rev. 21.0
systems or 1980 PSDNs, in which case bufbc must 1.

status
INTEGER*2. Returned. The status of this transmit.
The following codes can occur in status immediately on return from X$TRAN:

XS$BPM

XS$BVC

XS$ILL

XS$EP

XS$MAX

XS$MEM

The call contains invalid arguments.

The calling process does not control the virtual circuit specified in
vcid.
The transmit operation is illegal because a circuit connection request or
a clear request is pending. This error is the result of attempting trans
mission over an "almost-open" or "almost-closed" circuit.
The transmit is in progress, status will be further updated upon the
completion or failure of the operation. This is the normal immediate
return code from X$TRAN.
This request to initiate a new transmission is denied because the virtual
circuit is already carrying the maximum number of transmissions that
can be in progress simultaneously over a single virtual circuit.
There is temporary PRIMENET buffer congestion on your local node
that prevents the acceptance of the transmit request at this time.

The following codes can occur in status immediately (especially in the case of loopback, where
both ends of the virtual circuit are on the same system), or can occur at a later time:

XS$CLR

XS$CMP

XS$RST

The virtual circuit has been cleared. Check the virtual circuit status
array to find the clearing cause and diagnostic code.
The transmit is complete. The message has been copied out of the
sender's buffer and transmission has been initiated. (A transmit status
of complete means only that PRIMENET will attempt to deliver the
message. Applications requiring assured delivery must implement their
own end-to-end acknowledgment in a higher-level protocol of their
own.)
The virtual circuit has been reset. The status of this transmit request is
unknown and no further attempts will be made to complete it.

4-29

Programmer's Guide to Prime Networks

Subroutine: X$RCV
Description: Receiving Data
X$RCV is the IPCF receive-message subroutine. An application offers a buffer into which
PRIMENET places received messages from the specified virtual circuit. The application receiving
a message should establish its receive buffer before the sending application attempts to transmit
data.
In all cases, data messages transmitted through the X$TRAN subroutine are reproduced
identically in the receive buffer. However, three special cases are worthy of note: mismatched
buffer sizes, interrupt handling, and circuit resets.

Mismatched Buffer Sizes: The simplest case is a receive buffer that is the same size as or
bigger than an incoming data message. In such a case, the receive status is set to indicate a
completed receive as soon as the entire message is copied into the receive buffer.
When the receive buffer is too small to contain an incoming message, the specified buf'er is
filled, the receive status is set to indicate a completed operation, and the remainder of the message
is held until another buffer, presented by another call to X$RCV, is available. PRIMENET
attempts to complete the delivery of the message; if necessary, it fills the second buffer and again
holds the remainder. This process continues until the complete message is copied into the
receiver's buffers.

Interrupt Handling: A process may send an interrupt across a virtual circuit even when regular
data transmissions are in progress. (See X$TRAN.) Because an interrupt may pass normal data
moving in the network, a partially completed receive may be interrupted by such an interrupt
message. An application receives interrupts in the same way it receives regular data with X$RCV.
If a receive buffer offered in a call to X$RCV is partially filled with level 0 or level 1 data when
an interrupt message is received, the following actions take place. The status word of the X$RCV
request that is currently being filled is marked as completed, even if the receive buffer is not yet
completely filled. The next pending call to X$RCV serves to receive the interrupt, and the call to
X$RCV after that receives the remainder of the original message. No data loss results in this
exchange, but the original data message is broken into two pieces, so that an extra call to X$RCV
is needed. The receiving process should always inspect the returned status code to find out the
level of received data. When the status code indicates that an interrupt has occurred, the interrupt-
handling code should issue extra calls to XS$RCV as needed.
Since interrupt packets can be as many as 32 bytes long, a receive buffer that is smaller than 32
bytes could result in the loss of part of an interrupt packet. However, even if part of the interrupt
packet is lost, the status array still reports the presence of an interrupt.

Circuit Resets: Circuit resets can result in loss of data because packets that are traveling in the
network may disappear. In most cases, you can detect a reset because uncompleted receive
requests return the status code XS$RST rather than XS$CMP. However, you may not be able to
detect a reset that occurs after the transmitting program sends data by means of X$TRAN but
before your program issues the corresponding call to X$RCV. No data is received, but X$RCV

4-30

IPCF Subroutines

does not know that a reset has occurred, and thus does not return a status of XS$RST. The only
way to detect the reset in this case is to check the virtual circuit status array. You can follow
either of two procedures to avoid this problem:

• Be sure the receiving process calls X$RCV and establishes the receive buffer before
the transmitting process calls X$TRAN. This practice ensures that if a reset occurs
after the data are sent, the pending X$RCV call returns a status of XS$RST.

• Establish data flow checkpoints so that data can be retransmitted, rather than lost, in
the event of a reset.

Call syntax

CALL X$RCV(vcid, buffer, burn, status)

Arguments

vcid
INTEGER*2. The VCID for this circuit.

buffer
Any array. Returned. The data buffer into which incoming data should be moved. The buffer
must not cross a segment boundary.

bufn
INTEGER*2. The maximum number of bytes that may be moved into buffer.

status
Three-word array, INTEGER*2. Returned.
The first word is the receive request status word.
The second word is set to the level of the incoming data (XT$LV0, XT$LV1, or XT$INT).
The third word is set to the number of bytes moved into buffer.
The following codes can occur in the first word of status immediately on return from X$RCV:

XS$BPM The call contains invalid arguments.
XS$BVC The calling process does not control the virtual circuit specified in

vcid.
XS$ILL The receive operation is illegal because a circuit connection request or

a clear request is pending. This error is the result of setting up a
receive on an "almost-open" or "almost-closed" circuit.

XS$IP The receive is in progress, status will be further updated upon the com
pletion or failure of the operation. This is the normal immediate return
code from X$RCV

4-31

Programmer's Guide to Prime Networks

XS$MAX

XS$MEM

This request to initiate a new receive is denied because the virtual cir
cuit is already carrying the maximum number of receives that can be in
progress simultaneously over a single virtual circuit.
There is temporary PRIMENET buffer congestion on your local node
that prevents the acceptance of the receive request at this time.

The following codes can occur in status immediately (especially in the case of loopback, where
both ends of the virtual circuit are on the same system), or can occur at a later time:

XS$CLR

XS$CMP

XS$RST

The virtual circuit has been cleared. Check the virtual circuit status
array to find the clearing cause and diagnostic code.
The receive is complete. The incoming data have been moved to
buffer, and the second and third words of status are updated.
The virtual circuit has been reset. The status of this operation is
unknown and no further attempts will be made to complete it.

4-32

IPCF Subroutines

Subroutine: X$CLR X$FCLR XLCLR
Description: Clearing a Call
At any time during the life of a virtual circuit, an application may clear (break) the circuit by
calling one of the clearing subroutines. These subroutines disconnect a virtual circuit by initiating
transmission of a Clear Request packet.
To use the clearing subroutines, an application must already have received the virtual circuit ID
number (VCID) of the circuit to be cleared. (The VCID would have been passed to the
application through a call to X$CONN/X$SCON/X$FCON/XLCONN or X$GCON/X$FGCN/
XLGCON/XLGC$.) A call to X$CLR/X$FCLR/XLCLR specifying the VCID in question cancels
all activities in progress, releases any resources, and notifies the process on the other end of the
circuit that a clear has been requested.
A called user may request a clear, rather than accepting a call, immediately after receiving a call
request. The called party may return one diagnostic byte giving the reason for the clear request. In
the case of a Fast Select call, the clear request may contain a User Data field of as many as 128
bytes. An accepted Fast Select call may be cleared with user data by either the caller or the called
party.
The actual clearing process happens in two stages. First, the call to the clearing subroutine
initiates transmission of a Clear Request packet to the other end of the virtual circuit. To indicate
this stage, the clear subroutine returns a status code immediately. If the call is successful, all
transmit and receive requests in progress on the virtual circuit in question are immediately
aborted, and their status codes are changed to XS$CLR.
Secondly, when the remote system receives the clear request, it answers by transmitting back a
clear confirmation message. Only when the clear confirmation has been returned successfully
does the clear requesting caller see the circuit as cleared in the first word of the virtual circuit
status array (vcstat). The second word of the virtual circuit status array is invalid in this case.
Normally, if the clear was requested before the virtual circuit was accepted, there is no virtual
circuit array defined; therefore, the application cannot detect the confirmation. However, if you
used the XK$SAV option in a call to XLGC$ you will have the status of the circuit.
When the remote process initiates the clear request, the local PRIMENET process (NETMAN)
automatically sends the clear confirmation, aborts all data transfer operations in progress, and sets
the first word of the virtual circuit status array to the circuit cleared value (XS$CLR). The second
word is set to the valid clearing cause and diagnostic code. These codes are described in Chapter
2, Port Assignments and Virtual Circuits, and listed in Appendix C, Clearing Causes and
Diagnostic Codes.

Note
The delay for the clear confirm might be noticeable, especially over
long-distance PSDN links. The application that requests a clear should
wait until the XS$CLR status has been returned into the virtual circuit
status array before returning to PRIMOS (with CALL EXIT). You can
also call X$CLRA immediately if you are unable to wait for the
XS$CLR status. However, calling X$CLRA has the effect of wiping
out ALL virtual circuits, including those created at lower command
levels.

4-33

Programmer's Guide to Prime Networks

X$CLR is the short form clearing routine, primarily intended for use between Prime nodes.
X$FCLR is specifically intended for the clearing of Fast Select calls, when the application wants
to return clear user data.

XLCLR, the long form clearing subroutine, allows you to include X.25 facilities when clearing a
call.

Note
The Clear User Data field's value is given by a single argument,
clrudat, that corresponds to the concatenated arguments prid and udata
of the X$FACP/XLACPT routines.

Call syntax

CALL X$CLR(vcid, why, status)

CALL X$FCLR(vcid, why, clrudat, clrudatn, status)

CALL XLCLR(key, vcid, why, fcty, fctyn, clrudat, clrudatn,
rsrvdl, status)

Arguments

key
INTEGER*2. Set to 1.

vcid
INTEGER*2. The VCID of the circuit to be cleared.

why
INTEGER*2. The low-order byte of why may take on values from 0 through 255 and is taken
as the diagnostic code. (Refer to Chapter 2, Port Assignments and Virtual Circuits, for
information about diagnostic codes.) The high-order byte of why is usually 0, or may
exceptionally take on a value from 128 through 255.

fcty
Array. Contains the bytes to go into the Clear Request packet facilities field. (Ignored if fctyn
isO.)

fctyn
INTEGER*2. The number of bytes to be taken from fcty. Legal range is 0 to 109. For
connections to X.25 1980 PSDNs or pre-Rev. 21.0 Prime systems, the maximum legal value is
63.

4-34

IPCF Subroutines

clrudat

Array. A buffer that holds the bytes to go into the User Data field of the Clear Request packet.
(Ignored if clrudatn is 0.)

clrudatn
INTEGER*2. The number of bytes to be taken from clrudat. The legal value is 0, except
following Fast Select calls, when the range is 0 through 128.

rsrvdl
INTEGER*2. Reserved for future use. Set to 0.

status
ENTEGER*2. Returned. Contains the immediate return status of the call.
The following status codes may be returned.

XS$BPM
XS$BVC

XS$CLR

XS$CMP

XS$FCT
XS$ELL

XS$MEM

One of the arguments to the call has an illegal value.
The calling process does not control the virtual circuit specified by the
vcid.
It was not possible to update the virtual circuit status array or the status
vector associated with the user's pending operation. However, the cir
cuit has been cleared.
The operation is successful. All pending transmits and receives are
aborted with a status of XS$CLR.

Bad facility field supplied. (XLCLR only.)
A clear with user data has been requested for a Fast Select virtual cir
cuit, but it does not immediately follow the call request. Also may
indicate that you tried to clear a circuit that is not in a state to be
cleared.

(Occurs only if user data or facilities are present.) There is temporary
buffer congestion in the local network. The system currently does not
have the resources required to process the request. Retry the request
later, unless you called X$CLR, which uses a built-in memory mecha
nism to initiate the clear request later.

4-35

Programmer's Guide to Prime Networks

Subroutine: XLGI$
Description: Finding Information About a Cleared Call
XLGI$ returns the contents of an extended Clear Indication packet (that is, a Clear Indication
packet containing facilities or user data) if the user requested that extended Clear packets be held.
(This request is made by calling XLCONN or XLACPT with the XK$RXC key.) Call this routine
only after the status vector passed to XLCONN or XLACPT has changed to XS$CLR. After the
packet has been read, call X$CLR to release the virtual circuit.
Call syntax

CALL XLGI$(key, vcid, port, gfi, vcn, cmnd, fadr, fadrn,
fadrbc, tadr, tadrn, tadrbc, fcty, fctyn, fctybc,
prid, pridn, pridbc, udata, udatan, udatbc, status)

Arguments

key
INTEGER*2. Unused. Should be 0.

vcid
INTEGER*2. Returned. VCID for this circuit.

port
INTEGER*2. Returned. PRIMENET port number for this circuit.

gfi
INTEGER*2. Returned. X.25 GFI for this packet.

vcn
INTEGER*2. Returned. X.25 logical channel number for this circuit.

cmnd
INTEGER*2. Returned. X.25 command byte for this packet (always 19).

fadr

Array. Returned. Holds a string of bytes (char nonvarying in PL/I). Usually null; may contain
the subscriber address for the node at which the call originated.

fadrn
INTEGER*2. Maximum number of bytes fadr may receive. Addresses are a maximum of 15
bytes in length.

4-36

IPCF Subroutines

fadrbc
INTEGER*2. Returned. The number of bytes returned into fadr. This argument normally will
be 0 on return.

tadr
Array. Returned. Holds a string of bytes (char nonvarying in PLA). Usually null; may contain
the address for the node at which the call was received.

r
r

tadrn
INTEGER*2. Maximum number of bytes tadr may receive. Addresses are a maximum of 15
bytes in length.

tadrbc
INTEGER*2. Returned. The number of bytes returned into tadr. Normally this argument will
be 0 on return.

fcty
Array. Returned. Holds a string of bytes (char nonvarying in PL/I). Receives a copy of the
clear indication facilities field. (Ignored if fctyn is 0.)

fctyn
INTEGER*2. Maximum number of bytes fcty may receive. The legal maximum for facility
fields is 109 bytes (or 0 for calls to 1980 PSDNs or pre-Rev. 21.0 Prime systems).

fctybc
INTEGER*2. Returned. The number of bytes returned into fcty.

prid
Array. Returned. Receives the first four bytes of the User Data field from the Gear Indication
packet. (Ignored if pridn is 0.)

pridn
INTEGER*2. 0 to 4. The maximum number of bytes prid may receive. Clear Indication
packets may have at most 128 bytes of user data. Four bytes of user data (the Protocol ID) are
copied into prid; the remaining bytes are copied into udata.

pridbc
INTEGER*2. Returned. The number of bytes copied into prid.

udata

Array. Returned. Receives the User Data field from the Gear Indication packet. (Ignored if
udatan is 0.)

4-37

Programmer's Guide to Prime Networks

udatan
INTEGER*2. 0 to 124. The maximum number of bytes udata may receive.

udatbc
INTEGER*2. Returned. The number of bytes of user data copied into udata.

status
LNTEGER*2. Returned. Contains the immediate return status of the call.
The following status codes may be returned in the status word:

XS$CMP Operation complete.
XS$NOP No call requests pending.
XS$BPM Invalid key argument in call.
XS$NET Networks are not currently running.

4-38

IPCF Subroutines

r

r

Subroutine: X$UASN XLUASN
Description: Deassigning a Port
X$UASN and XLUASN are used to deassign ports — that is, to remove an application from
the assignment queues of currently assigned ports. At any time, an application may deassign any
or all of the ports assigned by it. The application's assign request for the specified port is
immediately deleted from the assignment queue regardless of its position in the queue.
If the value of the specified port is < 0, all of the application's port assignment requests are
dropped from the assignment queues.
The X$UASN subroutine is adequate for most port deassignments. The XLUASN subroutine is
intended for use in writing servers that will be privileged processes. (Privileged processes are
defined in the section describing X$ASGN/XLASGN.) To remove an extended assignment
previously created with XLASGN, call XLUASN with the same arguments used in the XLASGN
call, with the exception of count.
This operation always completes successfully. If the port passed in the call is not assigned at the
time of the X$UASN or XLUASN call, no action is taken. The call syntax for XLUASN follows
the call syntax for X$UASN.
Call syntax

CALL X$UASN(port)

Arguments

port
INTEGER*2. (INPUT). The number of the port to be deassigned. 0 through 99 for
unprivileged processes; 0 through 255 for privileged processes. -1 causes all ports to be
deassigned.

Note
The calling sequence for XLUASN is inconsistent with the other IPCF
routines. The arguments that are normally FORTRAN arrays of
characters or PL/I character nonvarying strings are PL/I character
varying strings for XLUASN.
To call XLUASN from FORTRAN, you must build a data structure
that is interpreted as a character varying string, that is, a 16-bit length
field followed by an array of characters. For example, the prid
argument is defined as CHAR(4)VAR. The equivalent FORTRAN
declaration is INTEGER*2 PRID(3), with PRID(l) set = 4, and
PRID(2) and PRID(3) holding the 4 bytes of the prid field. To pass a
value of 999912341234 in the tadr field, declare INTEGER*2
TADR(9), and set TADR(l) = 12 and put the characters
999912341234 in TADR(2) through TADR(7).

4-39

Programmer's Guide to Prime Networks

Call syntax

DCL XLUASN ENTRY(BIT(16), CHAR(15)VARY, CHAR(15)VAR, CHAR(4)VAR,
CHAR(128)VAR, FIXED BL\(15), CHAR(41)VAR, FIXED BIN(15),
RXED BIN(15), HXED BIN(15), HXED BIN(15));

CALL XLUASN ENTRY(key, tadr, tsadr, prid, udata, port, txadr, rsvdl,
rsvd2, rsvd3, status);

Arguments

key
INPUT. Structure as defined below, an overlay for bit(16).

DCL 1 key,
2 mbz bit(6),
2 daxr bit(l),
2 flush bit(l),
2dadrbit(l),
2 dasr bit(l),
2 dprid bit(l),
2 dudata bit(l),
2 dport bit(l),
2 mbz2 bit(l),
2 dme bit(l),
2 mbz3 bit(l);

/* not used, must be 0 */
/* XK$DAX: select on called addr extn */
/* XK$FLU: remove all port assignments */
/* XK$DAD: select on address prefix */
/* XK$DSA: select on address suffix */
I* XK$DPR: select on prid */
/* XK$DUD: select on user data */
/* XK$DPO: select on port number */
/* not used, must be 0 */
/* XK$DME: select only calls to local node */
I* not used, must be 0 */

Specifies which types of incoming calls are no longer to be returned. Formed from the parts
listed below. Some parts are required and others are optional, as indicated in the list. With the
exception of XK$DME and XK$DPO, the keys may be supplied by privileged users only.
One of the following parts is required:

XK$DAD

XK$DME

Deassigns incoming calls whose called addresses start with the digits
specified in tadr and are not among the X.25 addresses configured for
this node.

Deassigns incoming calls whose called addresses are among the X.25
addresses configured for this node.

The following parts are optional:

XK$FLU Removes all port assignments.
XK$DSA Deassigns incoming calls whose Called Addresses end in tsadr and

whose remaining digits comply with the XKDME/XKDAD
specification.

4-40

IPCF Subroutines

You can also add any of the following parts. Use them individually or use XK$DPR and
XK$DUD together.

XK$DAX Deassigns incoming calls when the Called Address Extension facility is
present and when the value of the Called Address Extension begins
with txadr

XK$DPO Deassigns incoming calls whose port numbers are port (and that do not
have a Called Address Extension facility present)

XK$DPR Deassigns incoming calls whose Protocol ID fields begin with prid
(and that do not have a Called Address Extension facility present)

XK$DUD Deassigns incoming calls whose User Data fields begin with udata
(and that do not have a Called Address Extension facility present)

XK$SAD Deassigns incoming calls whose Calling Addresses begin with fadr
XK$SSA Deassigns incoming calls whose Calling Addresses end v/ithfsadr

tadr
INPUT. Holds a char varying string of ASCII digits, the Called Address prefix. Used only if
key includes XK$DAD.

tsadr
INPUT. Holds a char varying string of ASCII digits, the Called Address suffix. Used only if
key includes XK$DSA.

prid
INPUT. Holds a char varying string of bytes, the Protocol ID field. If both prid and udata are
supplied, then the length of prid must be 4. Used only if key includes XK$DPR.

udata
INPUT. Holds a char varying string of bytes, the User Data field. The maximum length is 12 if
the prid argument is supplied, and 16 otherwise. Used only if key includes XK$DUD.

Note
If both XK$DUD and XK$DPR are used, then prid and udata are
concatenated at runtime. If only XK$DUD is supplied, then the User
Data field is assumed to include the Protocol ID field.

port
INPUT. The number of the port to be deassigned. 0 through 99 for unprivileged processes; 0
through 255 for privileged processes. -1 causes all ports to be deassigned. Used only if key
includes XK$DPO.

4-41

Programmer's Guide to Prime Networks

txadr
INPUT. Holds a char varying string of bytes, the Called Address Extension prefix to use in the
search. Used only if key includes XK$DAX.
Supply the Called Address Extension prefix in binary-coded decimal, using a maximum of 41
BCD digits. The first digit has the following meaning:

0 Full OSI NSAP address
1 Partial OSI NSAP Address
2 Non-OSI NSAP Address
3 Reserved by ISO

The remaining digits may take any value from 0 through 9.

rsrvdl
Reserved for future use. Set to 0.

rsrvd2
Reserved for future use. Set to 0.

rsrvd3
Reserved for future use. Set to 0.

status
OUTPUT. The returned status of the call.
The following status codes may be returned by a call to XLUASN:

XS$BPM

XS$CMP
XS$NET

At least one of the parameters specified in the call is not in the legal
range.
The port has been unassigned.
Networks are not configured for this system.

4-42

IPCF Subroutines

Subroutine: X$CLRA
Description: Reinitializing an Application's Network Environment
X$CLRA reinitializes the network environment of a process, including calls held by nested EPFs.
Any pending network operations are aborted and all of the virtual circuits held by the application
are cleared.

Note
Unlike XCLR, XCLRA does not wait for confirmation from the
application on the other side of the circuit before marking the circuit
cleared. Therefore, the virtual circuit status word of a circuit cleared
by a call to X$CLRA is never updated to show that the circuit is
cleared.

In addition to clearing all open virtual circuits, X$CLRA deassigns all ports. In this regard, it is
equivalent to the call: X$UASN (-1).
This subroutine also drains the application's network (X$WAIT) semaphore, reducing the chances
for spurious network event signals. Refer to Subroutines Reference III for complete information
on semaphores.
Call syntax

CALL X$CLRA

This operation always completes successfully. If no virtual circuits are open or no ports are
assigned, no action is takea X$CLRA should be used before an exit from any process or
subsystem within an application, or before an exit to PRIMOS. The first Note in the section on
XCLR/XFCLR/XLCLR explains why.

4-43

Programmer's Guide to Prime Networks

Subroutine: X$WAIT
Description: Waiting for Completed PRIMENET Action
X$WAIT performs a semaphore wait for a network activity to complete. Optionally, this wait can
be combined with a finite timeout period. Most of the IPCF subroutines initiate an activity and
then immediately return so that the application can continue processing while the requested
network action completes. The X$WAIT call provides a mechanism by which applications can
ask to have processing suspended until any of their network actions completes.
When treated as an INTEGER*2 function, X$WAIT returns a code argument that indicates
whether the cause of the resumption of execution was a completed PRIMENET action or a
timeout.
A network activity is considered complete whenever the status of the corresponding request
indicates that PRIMENET will take no further action on that request. In general, this includes any
return status except the operation-in-progress code (XS$IP). (A code of XS$IP is always updated
by PRIMENET as soon as the relevant activity completes.) A suspended process is also awakened
when PRIMENET receives a connection request for that process.

Note
X$WAIT is implemented as a PRIMOS-quittable semaphore. As such,
a suspended process may be awakened even though the action has not
completed. Code using X$WAIT should make provision for this fact.
Refer to the Subroutines Reference III for information about
semaphores.

To prevent event count rollover, the network semaphore collects network events into a combined
single notification when the application is not waiting on its network semaphore. A process
should take into account that when it is awakened by X$WAIT, multiple network activities may
have completed. In this case, a new X$WAIT call anticipating completion of one of those
activities does not wake the application again until another request completes. This situation can
cause the program to hang. Accordingly, applications should test all outstanding requests.
Call syntax

CALL X$WAIT(time)
code = X$WAIT(time)

Arguments

time
INTEGER*2. The number of tenths of seconds to remain suspended if no network action
completes. (If time is 0, wait indefinitely.)

4-44

IPCF Subroutines

code
INTEGER*2. Returned function value. May be 0 or 1, as shown below.

0 Some network action (not necessarily the awaited one) completed before the
timer expired.

1 The timer may have expired before any network action completed. The expira
tion of a timer may indicate a network semaphore notify. User programs should
check for network activity.

4-45

Programmer's Guide to Prime Networks

Subroutine: X$GVVC XLGVVC
Description: Transferring a Call
X$GWC/XLGVVC transfers control of a virtual circuit to another process on the same
PRIMENET node. The process issuing the virtual circuit relinquishes the right to clear and to
send or receive data through the specified circuit. The circuit is placed in the connection request
pending queue for the target process, and is treated thereafter in the same manner as an incoming
connection request.

The subroutine can transfer calls to a specific application through the application's user number or
to a numbered port (and thus to an application that has assigned the port). If the original Call
Request/Call Accept packet has been released, the application can generate a simulated Call
Request packet to transfer control of the virtual circuit. You can use this feature to transfer
information to the target application through the User Data field. Call Request packets are
released when the virtual circuit is accepted; Call Accept packets are released by the first transmit/
receive request on the circuit.
An application can transfer control of a circuit in the incoming request queue without accepting
the circuit. The initial choice of accepting or clearing the circuit is then left to another application.
In this case, the process to which the circuit is transferred sees the circuit connection request as a
new request, not as one being transferred.

Control of a circuit cannot be transferred under the following conditions:

1. The application issued the call to X$CONN, X$FCON, or XLCONN to create this
circuit and the circuit establishment has not yet been completed (that is, the virtual
circuit status has not yet been set to XS$CMP).

2. The application wishing to transfer control of the circuit has a call in progress to
X$RCV or X$TRAN.

3. The virtual circuit is already in the process of being transferred.
4. The virtual circuit is a remote login circuit.
5. The contents of the existing Call Request/Call Accept packet and the contents of the

user-requested Call Request packet conflict.

Note
While being transferred, a virtual circuit has no owner, and thus has no
virtual circuit status vector.

The target application requests and receives information about transferred virtual circuits by
calling X$GCON/X$FGCN/XLGCON/XLGC$. Any of these routines returns the VCID, by
which the target application identifies the connection being transferred. Just as with new
incoming connection requests, transferred connection requests must be cleared or accepted before
data transfer can occur. As with new incoming connection requests, a transferred connection that
has not been accepted or explicitly cleared within 100 seconds after it enters the incoming request
queue is automatically cleared by PRIMENET.
X$GVVC, the short form routine, transfers a call by target process user number.

4-46

IPCF Subroutines

XLGVVC, the long form routine, permits transfer by either user number or numbered port, and
optionally supplies call request data for the transfer.
Call syntax

CALL X$GVVC(vcid, userno, status)

CALL XLGVVC(key, vcid, rsvrdl, rsvrd2, userno, port, fadr, fadrn, tadr,
tadrn,fcty, fctyn, prid, pridn, udata, udatan, status)

Arguments

key
INTEGER*2. Specifies selection of target process.

XK$USR Transfer to user number userno
XK$PRT Transfer by PRIMENET port port

vcid
INTEGER*2. The VCID for the circuit being transferred.

userno
INTEGER*2. The user number of the process to which this circuit is being transferred. Used
only when key = XK$USR, or with X$GVVC. The legal range is from 2 through the sum of
the CONFIG directives NTUSR + NPUSR + NRUSR + NSLUSR.

rsvrdl
ANY. Reserved for future use. Set to 0.

rsvrd2
ANY. Reserved for future use. Set to 0.

port
ENTEGER*2. The port number to be used to transfer the virtual circuit. Used only when
key = XK$PRT. Range is 1 through 255.

fadr

Array. Holds a string of bytes (char nonvarying in PLA). Contains the address of the simulated
call-originating network node.

fadrn

INTEGER*2. The number of characters in fadr.

4-47

Programmer's Guide to Prime Networks

tadr
Array. Holds a string of bytes (char nonvarying in PL/I). Contains the address of the target
node. For PRIMENET nodes, the maximum length is 6. If you are using an address, the
maximum is 15.

tadrn
ENTEGER*2. The number of characters in tadr.

fcty
Array. Holds a string of bytes. Contains the bytes to go into the simulated call request packet
facilities field. (Ignored if fctyn is 0.)

fctyn
INTEGER*2. The number of bytes to be taken from fcty. Legal range is 0 to 109 (0 to 63 for
pre-X.25 1984 connections).

Note
In contrast to initial call requesting and acceptance, there is no check
done for legality of the supplied facility field. Also, the facilities
requested by this facility field are completely ignored. The virtual
circuit's parameters remain unchanged. It is suggested that the facility
field from the virtual circuit's creation be copied, if the application
wants to transmit a facility field.

prid
Array. A buffer that contains the four bytes to go into the simulated call request packet
Protocol ID field. (Ignored if pridn is 0.)

pridn
ENTEGER*2. The number of bytes to be taken from prid. Legal values are 0 and 4.

Note
If pridn is 0, PRIMENET uses the Protocol ID field to transfer the
port specified in port. In this case, this field is used for a host-to-host
protocol format defined for PRIMENET.
If pridn is 4, the application-supplied bytes are used. In this case, the
value specified in port will still control the virtual circuit transfer.

udata
Array. A buffer that holds the bytes to go into the User Data field of the Call Request packet.
(Ignored if udatan is 0.)

4-48

IPCF Subroutines

udatan
INTEGER*2. The number of bytes to be taken from udata. Legal values are 0 to 124. Should
be 0 for all calls that are not Fast Select calls.

status
INTEGER*2. Returned. Contains the return status of the call.
The following status codes may be returned by a call to X$GVVC/XLGVVC.

XS$BVC

XS$BPM

XS$CMP

XS$ILL

XS$MEM

XS$UNK

The calling process does not control the virtual circuit specified by
vcid.
One of the arguments to the call is missing, out of range, or in conflict
with other arguments.
The operation was successful. This virtual circuit is now pending on
the target process's connection request queue.
This virtual circuit is in one of the states described above during which
transfer is prohibited.
There is temporary local PRIMENET buffer congestion. The system
currently does not have the resources required to process the request.
Retry the request later.
The target application is not logged in or the call cannot be transferred
by use of the specified port.

4-49

Programmer's Guide to Prime Networks

Subroutine: X$STAT
Description: Finding Network Status
An application may call X$STAT at any time to determine the state of the network. The value
given in key specifies the type of status information to be returned. X$STAT returns information
about the local system's PRIMENET configuration, the currently open virtual circuits, and the
mapping of ASCII PRIMENET names to their X.25 addressing form equivalents. The parameters
num, arrayl, alenl, array2, and alen2 are input arguments, returned values, or unused, depending
on the value of key.
Call syntax

CALL X$STAT(key, num, arrayl, alenl, array2, alen2, code, time)

Arguments

key
INTEGER*2. Specifies information to be returned.

XI$ADR Returns all X.25 addresses in the network.
XI$AVC Returns VCIDs of all circuits that are open to or from a specific X.25

address.
XI$VCD Returns information about a specific virtual circuit.
XI$XTP Returns the PRIMENET name associated with an X.25 address.
XI$PTX Returns the X.25 address associated with a PRIMENET name.
XI$MYN Returns the X.25 address and PRIMENET name of the application's

system.
XI$PDN Returns names of all accessible Packet Switched Data Networks.
XI$PVC Returns VCIDs of all circuits that are open to or from a specific Packet

Switched Data Network.
XI$RLG Returns the VCID and remote address of a process's remote login

circuit.

num
INTEGER*2. Conditionally returned. The number of network addresses returned, the number
of virtual circuit IDs returned, the number of accessible Packet Switched Data Network names
returned, or no meaning, depending on key.

arrayl
Array. Conditionally returned. Defined by INTEGER*2 words, you should ensure that this is
dimensioned according to the size of the network configuration currently active on the node. A
buffer containing X.25 addresses, packet switched data network names, and/or PRIMENET
names (in ASCII, with two characters per array entry), depending on key.

4-50

IPCF Subroutines

r

alenl
INTEGER*2. Conditionally returned. Indicates how much of arrayl was actually used.

array2
Array. Conditionally returned. If defined by INTEGER*2 words, should be dimensioned to at
least 256 words. A buffer containing virtual circuit identifiers, virtual circuit status
information, the number of characters in each X.25 address, the number of characters in the
PRIMENET system name, or the number of characters in the PSDN name, depending on key.

WARNING
It may be necessary to increase the lengths of the two return arrays
arrayl and array2 to cope with large network configurations. As a
result, old programs risk being overwritten when PRIMENET needs to
use larger arrays than previously dimensioned. Users should review
their applications that use X$STAT.

alen2
INTEGER*2. Conditionally returned. Indicates how much of array2 was actually used.

code
INTEGER*2. Returned. Indicates outcome of call.

XS$CMP The operation was performed successfully.
XS$BPM Invalid arguments in the call.
XS$NET No network is configured.
XS$UNK The X.25 address, virtual circuit, PRIMENET name, or PSDN name is

unknown.

time
Returned. INTEGER*2. The current time; retrieved in quad seconds since midnight.
Each type of status call is described below. The meanings of code and time are the same for all
values of key. Starred arguments (*) are input arguments, and the other arguments are returned
by the call.

XI$ADR num contains the number of addresses in the network, arrayl contains
the addresses, two characters per entry, one name right after the other.
alenl contains the used length of arrayl. Each entry in array2 speci
fies the number of ASCII digits in the network addresses given in
arrayl. alen2 contains the number of used words in array2, which
equals the value of num.

4-51

Programmer's Guide to Prime Networks

XI$AVC

XI$MYN

XI$PDN

XI$PTX

XI$PVC

XI$RLG

XI$VCD

To find the offset into arrayl for a specific address, add the lengths of
the previous addresses, converted into needed array words per address.
Each address uses an integer number of array words, even if it has an
odd number of digits.
All PRIMENET nodes have addresses, even if they are not connected
to a PSDN. In the latter case, PRIMENET provides a fictitious number
calculated from the node name, starting with 9999. To find the node
name corresponding to an address, call X$STAT using key XI$XTP.
num contains the number of virtual circuits open to or from a specific
network address, arrayl* specifies the address of interest, alenl* is the
number of ASCII digits in the address of interest. The entries in array2
contain the VCIDs. alen2 is set to the actual used length of array2,
which equals the value of num.
num has no meaning and is not modified, arrayl is set to the
PRIMENET system name of the local node, alenl contains the number
of characters in the system's name. array2 contains the X.25 address
for the local node. alen2 contains the number of ASCII digits in the
X.25 address.
num contains the number of accessible Packet Switched Data Net
works, arrayl contains the names of these networks, alenl contains the
used length of arrayl. Each entry in array2 contains the number of
ASCII characters per corresponding network name. alen2 contains the
number of used words in array2, which equals the value of num.
num has no meaning and is not modified, arrayl* specifies the
PRIMENET system name of interest, alenl* specifies the number of
characters in arrayl. array2 contains the X.25 address. alen2 contains
the number of ASCII digits in array2.
num contains the number of virtual circuits open to the specified
Packet Switched Data Network, arrayl* specifies the Packet Switched
Data Network of interest, alenl* specifies the number of characters in
the name of the PSDN. The entries in array2 are the circuit numbers.
alenl is set to the actual used length of arrayl, which equals the value
of num.
num is set to the VCID of the process's remote login circuit, arrayl
contains the remote address, two characters per word, alenl is set to
the length of arrayl, in characters, arrayl and alen2 are not used.
num* specifies the VCID of interest. Each entry in arrayl is described
below. alen2 is 13 words, arrayl and alenl are not used.

array2(l)
array2(2)
array2(3)

Circuit status. See notes below.
User process number.
Maximum packet size in bytes.

4-52

IPCF Subroutines

array2(4) Packet-level window, that is, the maximum
number of outstanding packets.
Note that the packet size and window size
returned are the input direction sizes. Usually
the output direction sizes are the same, but
X.25 permits facility negotiations that can
make them unequal. (If desired, the output
sizes could be found by retrieving the input
sizes at the other end of the virtual circuit. If a
PSDN is part of the virtual circuit, the packet
and window sizes may be changed when they
pass through the PSDN.)

array2(5)
array2(6)
array2(7)
array2(8)
array2(9)

array2(10)
array2(ll)

array2(12)
array2(13)

Values for circuit

Circuit State
1
2
3
4
5
6

Port number of call.
Number of resets since call began.
Minutes open.
First word of the number of packets received.
Second word of the number of packets
received.

(array2(8) concatenated with array2(9) thus
forms an INTEGER*4 variable.)
First word of the number of packets sent.
Second word of the number of packets sent.

(array2(10) concatenated with arrayl(ll) thus
forms an INTEGER*4 variable.)
Controller type. See notes below.
RINGNET node ID, logical SMLC line num
ber, or LAN300 node index. Loopback returns
a value of-1.

state and controller type are listed below.

Meaning
Remote login (on this system).
Unused.
Unused.

Circuit being transferred.
User data transfer.
User local call request pending.

4-53

Programmer's Guide to Prime Networks

XI$XTP

User remote call request pending.
8 User local clear request pending.
9 Unused.

10 Unused.
11 Unused.
12 Clear desired but no memory available.

PRIMENET will automatically retry clear
request.

13 Unused.
14 Remote log-through (placing a login to another

15

16
Controller Type

1
2
3
4
5

node).
Have received Clear Indication; waiting for
Clear Confirm.
Call Request awaiting Restart.
Meaning
Reserved
SMLC
Ring (PNC)
Local connection within same machine
LAN300 Host Controller (LHC)

num has no meaning and is not modified, arrayl* specifies the X.25
address of interest, alenl* specifies the number of ASCII digits in
arrayl. arrayl contains the PRIMENET system name. alen2 contains
the number of ASCII characters in arrayl.

4-54

IPCF Subroutines

Subroutine: X$RSET
Description: Resetting a Virtual Circuit
X$RSET resets the virtual circuit and aborts all operations in progress. The call to X$RSET
causes PRIMENET to transmit a reset request packet to the other end of the virtual circuit,
complete all X$TRAN and X$RCV operations (with status = XS$RST), and reinitialize flow
control variables in accordance with X.25 packet level protocol. If PRIMENET cannot send a
reset immediately, it sends the reset when resources are available.

Caution
Very few applications need to use resets. Resetting a virtual circuit is
an extreme procedure. Use it only if you have a thorough
understanding of the X.25 protocol. A reset can result in the loss of
data.

Call syntax
CALL X$RSET(vcid,why,status)

Arguments

vcid
INTEGER*2. The virtual circuit ID for this circuit.

why
INTEGER*2. The low-order byte of why may take on values from 0 through 255 and is taken
as the diagnostic code. (Refer to Chapter 2, Port Assignments and Virtual Circuits, for
information about diagnostic codes.) The high-order byte of why is usually 0, or may
exceptionally take on a value from 128 through 255, in which case it will be used as a cause
code.

status
INTEGER*2. Returned. Contains the returned status of the call. The following status codes
may be returned in the status word:

XS$CMP

XS$BVC

XS$NET
XS$ILL

XS$CLR

The operation is successful. All pending transmits and receives are
aborted with a status of XS$RST.
The calling process does not control the virtual circuit specified by the
vcid.
Networks not configured.
The operation is illegal. This error is the result of attempting transmis
sion over "an almost-open" or "almost-closed" circuit.
The connection has been cleared and is no longer usable.

4-55

IPCF Programming Examples

The purpose of the following sample programs is to illustrate typical code for basic IPCF data
transfer. The first example contains only the basic code path needed for error-free function. The
second example presents full error handling, following the guidelines set forth in Chapter 3, IPCF
Programming Principles. Also, the general design rules discussed in Chapter 3 are used in the
second example. Each example is preceded by a brief description.

File-transmission System
This example consists of two programs, NETSND and NETRCV. Together, they form a
rudimentary PRIMENET file-transmission system. They use a common subroutine WAITIL to
check for completed network requests. The code of WAITIL follows NETRCV Notice that the
receiver program NETRCV uses double receive buffers to offload PRIMENET.
For simplicity, filenames of only eight characters or less are allowed; access to other directories is
not provided for. This example's error handling consists only of STOP statements, which would
not be sufficient for a real-life application.

5-1

Programmer's Guide to Prime Networks

The Transmitting Side
The following program represents the send side of a network copy program.

C NETSND.FTN - A SIMPLE, FAST NETWORK FILE COPY PROGRAM
C
C This is the transmitting side of the program; see also NETRCV.
C
$INSERT SYSCOM>X$KEYS.INS.FTN
$INSERT SYSCOM>ERRD.INS.FTN
$INSERT SYSCOM>KEYS.INS.FTN
C

INTEGER*2 J,FUNIT,CODE,NWR,LEVEL, RSTATE(3),XSTATE,VCID,
* VCSTAT(2),FILNAM(4),SYSTEM(3),BUF(1024)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

11

12

13

14

The basic idea is to:
* Open the requested file in the current ufd.
* Establish a circuit with a server on another system.
* Send over the filename to the server so it can open

a file of the same name for writing.
* Send over IK blocks of the file until we read to the

end of the file.
* Signal EOF to the server by sending a different

user data level.
* The server will acknowledge our end of file signal by

sending us the code from its close of the target file

STOPS are used to signal error conditions:
20 error in circuit establishment
24 error in transmit of filename
25 bad state from transmit of data
30 bad state in acknowledgement receipt
32 bad level in acknowledgement receipt
34 bad length in acknowledgement receipt
50 bad status on clear of virtual circuit

FUNIT=1
WRITE(1,11)
FORMAT(' INPUT FILE NAME, 8 CHARS OR LESS')
R E A D (1 , 1 2) F I L N A M / * A s k f o r a fi l e t o o p e n
FORMAT(4A2)
WRITE(1,13)
FORMAT(' INPUT REMOTE SYSTEM NAME')
READ(1,14) SYSTEM
FORMAT(3A2)

5-2

IPCF Programming Examples

r

c
C Clear everything
C

CALL X$CLRA
C
C Open the file

C
CALL SRCH$$(K$READ,FILNAM,8,FUNIT,J,CODE)

C
C and make sure the file was found.
C

CALL ERRPR$(K$SRTN,CODE,'ON OPEN',7,0,0)
C
C Now we set up the virtual circuit.
C We assume that the receiving half of this program
C is running on the
C remote machine and that it has assigned PRIMENET port 45.
C Connect to remote node. Await non-XS$IP status.
C

CALL X$CONN(VCID,45,SYSTEM,6,VCSTAT)
CALL WAITIL(VCSTAT)
IF (VCSTAT(1).NE.XS$CMP) STOP :20

C
C
C Send over the filename. Level 1 for control info, level 0 for
C fi le data .
C

CALL X$TRAN(VCID,XT$LV1,FILNAM,8,XSTATE)
C

CALL WAITIL(XSTATE)
IF (XSTATE.NE.XS$CMP) STOP :24 /* Could not xmit filename.

C
C
C Now just keep sending till EOF
C

L E V E L = X T $ L V 0 / * U s e d a t a l e v e l 0 ' t i l E O F .
C
30 CALL PRWF$$(K$READ,FUNIT,LOC(BUF),1024,000000,NWR,CODE)
C

IF (CODE.EQ.O) GOTO 35 /* Read OK.
I F (C O D E . N E . E $ E O F) / * I f n o t E O F f i t ' s a n e r r o r .

* CALL ERRPR$(K$SRTN,CODE,'READ',4,0,0)
C

L E V E L = X T $ L V 1 / * S w i t c h L E V E L f o r E O F .

5-3

Programmer's Guide to Prime Networks

35 CALL X$TRAN(VCID,LEVEL,BUF,NWR*2, XSTATE)
CALL WAITIL(XSTATE)
J=XSTATE
IF (J.NE.XS$XMP) CALL X$CLR(VCID,0,J)
IF (J.NE.XS$CMP) STOP :25
IF (LEVEL.EQ.O) GOTO 30 /* Keep sending 'til EOF.

C
C
C Now wait for acknowledgement from
C the remote node in the form of a
C 1 word (2 bytes) standard file system error code.
C

CALL X$RCV(VCID,CODE,2,RSTATE)
CALL WAITIL(RSTATE)
IF (RSTATE(1).NE.XS$CMP) STOP :30 /* Bad status
IF (RSTATE(2).NE.XT$LV1) STOP :32 /* Bad data level for

C c o n t r o l m s g
IF (RSTATE(3).NE.2) STOP :34 /* Bad length

C
C Always RETURN to clear the virtual circuit.
C

CALL ERRPR$(K$IRTN,CODE,'REMOTE CLOSE',13,0,0)
CALL SRCH$$(K$CLOS,0,0,FUNIT,J,CODE)
C A L L X $ C L R (V C I D , 0 , J) / * C l e a r v i r t u a l c i r c u i t
IF (J.NE.XS$CMP) STOP :50 /* Check status.
CALL EXIT
END

5-4

IPCF Programming Examples

r

The Receiving Side
The following program represents the receiving end of a network copy program.

C NETRCV.FTN - A SIMPLE, FAST NETWORK FILE COPY UTILITY
C
C This is the passive receiving part of a pair of programs.
C The active part, NETSND, runs on another system in this
C network. See NETSND for more information.
C
C
C The basic idea is to:
C * C l e a r a l l p o r t s .
C * A s s i g n p o r t 4 5 .
C * Wai t fo r connect ion requests .
C * A c c e p t t h e c a l l .
C * Get an 8-byte message with the filename to be opened,
C * Open the fi le fo r wr i t ing .
C * Receive data messages and write them to the file,
C w h i l e r e c e i v e d
C data messages are not 'USER LEVEL 1'.
C * Write a 'LEVEL 1' message to the file.
C * C l o s e t h e fi l e .
C * Send an acknowledgement to the sender.
C * Wait for the sender to clear the circuit.
C * Wait for the next connection request.
C
C STOPS are used to signal error conditions.
C
C
C
C
C
C
C
C
C
C NETRCV is designed to be run as a phantom. The phantom command
C file would have the following format:
C C O M O o u t p u t fi l e
C A u f d T h i s i s t h e d i r e c t o r y fi l e s w i l l
C b e c o p i e d t o .
C E X E C U T E N E T R C V _ r u n fi l e
C L O M a k e s u r e w e l o g o u t o n e r r o r .
C C O T T Y
C

10 error on assign of port
14 error in X$GCON call
20 error in X$ACPT call
30 bad receive of filename
32 bad level on receive of filename
34 bad length on receive of filename
40 error while receiving data for the file
50 error transmitting status to sender

5-5

Programmer's Guide to Prime Networks

$INSERT SYSCOM>X$KEYS.INS.FTN
$INSERT SYSCOM>KEYS.INS.FTN
$INSERT SYSCOM>ERRD.INS.FTN
C

INTEGER BUF(1024,2),CODE,FUNIT, J, Q, RSTATE(3,2),VCSTAT (2) -
+ S TAT (2) , V C I D , I , L

C
C
C It is a very good programming practice to always have a RECEIVE
C pending, to relieve the operating system of buffering problems.
C The buffer and receive status vector will be able to handle two
C messages at once.
C

C A L L X $ C L R A / * C l e a r - u p , i n c a s e p o r t 4 5
C p r e v i o u s l y i n u s e .

C A L L X $ A S G N (4 5 , 0 , J) / * A s s i g n p o r t 4 5 f o r e v e r.
IF (J.NE.XS$CMP) STOP :10 /* Bad assign.

1 0 C A L L X $ W A I T (0) / * W a i t f o r c o n n e c t i o n r e q u e s t .
CALL X$GCON(VCID,J,STAT)
L = S T A T (1) / * T e m p o r a r y c o p y .
IF (L.EQ.XS$NOP) GOTO 10 /* Not really a connect yet.
IF (L.NE.XS$CMP) STOP :14 /* Bad call to X$GCON.

C
C
C Here, if we have gotten a connect request.
C

CALL X$ACPT(VCID,VCSTAT) /* Accept the connection.
L=VCSTAT(1)
IF (L.NE.XS$IDL .AND. L.NE.XS$CMP)

* S T O P : 2 0 / * S o m e e r r o r o n A C C E P T .
C
C
C Now get the file name and open the file.
C

CALL X$RCV(VCID,BUF(1,1),8,RSTATE(1, 1))
CALL WAIT IL (RSTATE(1 ,1)) / * Wa i t f o r no t XS$ IP.
IF (RSTATE(1,1).NE.XS$CMP) STOP :30 /* Bad receive.
IF (RSTATE(2,1).NE.l) STOP :32 /* Wrong level.
IF (RSTATE(3,1).NE.8) STOP :34 /* Bad length.

C
FUNIT=3
CALL SRCH$$(K$WRIT,BUF(1,1),8,FUNIT,J,CODE) /* Open new file,
CALL ERRPR$(K$SRTN,CODE,'OPEN',4,0,0)

C
C Virtual circuit and file are both ready.
C Let's get into the main copy loop.
C This loop uses double buffering of receives.

5-6

IPCF Programming Examples

r
c
20

C
30

Sta r t fi rs t rece ive .

CALL X$RCV(VCID,BUF(1,1),2048,RSTATE(1,1))

Start second receive.

CALL X$RCV(VCID,BUF(1,2),2048,RSTATE(1,2))
1 = 2 / * I n i t d o u b l e b u f f e r p o i n t e r .

50

1=1 + 1
IF (I.EQ.3) 1=1
CALL WAITIL(RSTATE(1,I))
J=RSTATE(1,I)
IF (J.NE.XS$CMP) STOP :40
L=RSTATE(3,I)12

/* Indexes the buffer number.
/ * F l ip flops 1,2,1,2,1,2. . . .

/* Error on RCV.
/* Convert bytes to words.

CALL PRWF$$(K$WRIT,FUNIT,LOC(BUF(1,I)),L,000000,J,CODE)
CALL ERRPR$(K$SRTN,CODE,'WRITE',5,0,0)
IF (RSTATE(2,I).EQ.XT$LV1) GOTO 30 /* Level 1 <=> EOF.
CALL X$RCV(VCID,BUF(1,1),2048,RSTATE(1,1)) /* Issue receive.
GOTO 20

CALL SRCH$$(K$CLOS,0,0,FUNIT,J,CODE) /* Close the file.
CALL X$TRAN(VCID,XT$LVl,CODE,2,J) /* Return close code

to sender.
CALL WAITIL(J)
IF (J.NE.XS$CMP) STOP
CALL X$WAIT(0)
J=VCSTAT(1)
IF (J.EQ.XS$CLR) GOTO 10
IF (J.EQ.XS$CMP) GOTO 50
STOP :54
END

/* Wai t fo r t ransmi t comple te .
50 / * E r ro r on t ransmi t .

/* Wait for CLEAR from sender.
/ * Copy over c i r cu i t s ta tus .
/* OK to accept next call.
/* Wait for CLEAR,
/ * e l se some c i r cu i t e r ro r.

5-7

Programmer's Guide to Prime Networks

The following subroutine, which simply waits for the next network event, is called by NETSND
and NETRCV.

C WAITIL.FTN
C
C This subroutine returns when its argument
C (an asynchronously updated
C network status word) is anything other than 'XS$IP'.
C

SUBROUTINE WAITIL(STWORD)
C
$INSERT SYSCOM>X$KEYS.INS.FTN
C

INTEGER STWORD
IF (STWORD.NE.XS$IP) RETURN /* Nothing to wait for? Don't,

C u n l e s s p r o c e s s g e t s h u n g o n
C t h e s e m a p h o r e .
10 CALL X$WAIT(0)

IF (STWORD.EQ.XS$IP) GOTO 10
RETURN
END

Database Example Using Fast Select Calls
This example illustrates the use of Fast Select calls and the corresponding short form IPCF
subroutines. In addition, a call transfer to a second server type illustrates the use of XLGVVC.
The protocol at the user level is designed to minimize network overhead and connection time. The
intention of this scenario is to offer a set of sample programs that provide a query and update
service on a database, with the users spread over a network but the database centralized to one
node. The majority of the transactions are supposed to be status questions, which have brief
answers. However, some updates and queries have long answers. The implementation contains

• A user program
• A query server (single-threaded, running in multiple invocations)
• One update server (multi-task design)

The user program handles screen layouts and data compression/expansion. The user program
connects to a query server to obtain answers or perform updates. The transaction input data
always fits into a record of 80 bytes. The brief answers occupy a record of 100 bytes. Long
answers are of various lengths. Updates also require answers of varying lengths. These long
answers are a maximum of 2000 bytes long. They are transferred as single IPCF messages, and
the "receive complete" status indicates the end of transfer.
The majority of exchanged data records will be either 80 or 100 bytes, both of which fit into the
User Data fields of Fast Select calls. Thus, questions that have brief answers are handled as Fast
Select calls, given a fast clear by the query server. Long answers and updates are also initiated as

5-8

IPCF Programming Examples

Fast Select calls, but these are accepted. From the server the user program acknowledges the call
by clearing the VC with an appropriate clearing diagnostic.
The system designer has decided to run all updates by a separate single update server, having the
multiple query servers to detect update calls and pass these off to the update server.

Capacity and Service Busy
Several query servers run in parallel to handle the stream of queries. The number of servers is
expected to be so large that the probability of no available server is acceptably low. Consequently,
there is no special server to indicate that no server is available. The application will deduce from
the clearing diagnostic CD$PNA (port not assigned) that all query servers are currently busy.
This example uses only one update server. However, this server can have multiple active requests
going, each with its own VC. Again, the maximum number of service VCs in the update server is
expected to be sufficiently large. If the maximum is exceeded, the update server will clear the
new incoming call with an application-specific diagnostic (CD$NVC). The calling user program
will receive this diagnostic and handle it appropriately. If the update server is not running, any
query server that attempts to pass an update will fail, and will clear the call with the same
diagnostic.

Timing Aspects
The protocol attempts to keep turnaround times small. In fact, the majority of transactions,
queries with brief answers, are handled with only two information-carrying packets, the Call
Request packet and the Clear Request packlet. Notice that long answers are submitted to
PRIMENET as single messages, and that the final user side acknowledgement of a long answer is
combined with the clear request, generated by the user program.
The query server extracts the answer to a question by a subroutine call, before either clearing or
accepting the virtual circuit. This means that this database routine must return within the
timeframe set by PRIMENET so that the user process can act on the call request. Otherwise,
PRIMENET does a safety clear, and the user gets no answer. Similarly, the update server is busy
when calling the update routine. This means that request for call transfer will temporarily hang,
and the same maximum timeframe for delays exists here.
If the update times tend to be considerable, you might consider splitting the update server into
two processes, one dealing with PRIMENET and the other with the database. The network
process would simply queue updates for its mate, and sort responses on appropriate virtual
circuits for transmission. The link between these two update mates could either be a virtual
circuit, the file system, or shared memory with write access. The program structure of the network
handler would remain much the same, with additional code in the "per active virtual circuit" loop,
to find completed answers and transmit them.

5-9

Programmer's Guide to Prime Networks

Virtual Circuit Timeout Handling
Notice also the difference in handling aging virtual circuits. The query server is a single-path
program, and the final timeout before safety clearing is simply implemented as a long wait on the
network semaphore, combined with a safety call to X$CLRA before restarting.
In contrast, the update server must run frequently to ensure that every virtual circuit moves along.
If awakened, it may well be on behalf of another virtual circuit, so it is difficult to implement
long timeouts by using the network semaphore. The solution chosen is to run a watchdog timer
for each circuit, and to force the clear when this expires. Furthermore, this server must not call
X$CLRA, as this would obviously kill all active circuits.
The service period for a particular VC slot within the update server allows for the possibility for
the VC to be cleared while that VC index gets reused for another incoming call to the update
server. In this case two VC slots will refer to the same PRIMENET VC index. Potentially this
could cause some confusion. In the example below, the program ignores the previous occurrence
of a particular VC index, presuming that PRIMENET correctly cleared the first virtual circuit
before opening the second. You may want to account for this possibility differently in other
contexts.

The Code
The routines for handling the user terminal and the database are omitted. The names of the tasks
are included. The programs are coded in F77. Extensive use of explicit INTEGER*2 declaratioas
has been made, to remind the reader that F77's default integer mode of INTEGER*4 causes a risk
for wrong argument values when called routines expect INTEGER*2 arguments, as the IPCF
routines do.
Common Insert Files

C FSX_DATA.INS.F77, Common declaration of action keys and
C query message structures for Fast Select program example
C

NOLIST
C
C PRIMENET node and port data. Values to be tailored
C for each installation.
C

INTEGER*2 query_port, update_port
PARAMETER (query_port = $$, update_port = &&)

C
CHARACTER*6 server_node /'XXXXXX'/

C
C Action keys, contained in request message and initial response.
C

5-10

IPCF Programming Examples

+ CD$LNG = 2,
+ CD$EOU = 3,
+ CD$TMO = 4,
+ CD$RST = 5,
+ CD$NVC = 6,

+ CD$QIT = 7)

INTEGER*2 query, update, brief_response, long_response,
+ u p d a t e _ s t a r t e d , e x i t

PARAMETER (query = 1, update = 2, brief_response = 3,
+ long_response = 4, update_started = 5, exit = 6)

C
C Clearing diagnostics, used for various return status messages.
C

INTEGER*2 CDSHR, CDLNG, CDEOU, CDTMO, CDRST, CDNVC,
+ C D $ Q I T
PARAMETER (CD$SHR =1, /* Fast clear, proper short reply

/* Clear, ack of long reply
/* Clear, ack of update response
/* Clear by impatient server
/* Clear after reset
/* Update server has no VC
/* (or is not running)
/* User early abort

C
C User to server request message (80 bytes, first two
C to hold the action_key).
C

INTEGER*2 msg_size, data_size
PARAMETER (msg_size = 80, data_size = msg_size-2)

C
INTEGER*2 message(msg_size/2), action_key,

+ d a t a _ s t r i n g (d a t a _ s i z e / 2)
C

EQUIVALENCE (action_key, message(1)),
+ (d a t a _ s t r i n g (1) , m e s s a g e (2))

C
C Server to user response:
C [br ie f_response] :
C brief response is 100 bytes, first two to hold response key.
C [long_response]:
C long response up to 2000 bytes, -"-
C and the first 100 come in the fast accept, the rest by X$RCV
C [update_started]:
C two bytes only, the rest by later X$RCV.
C

INTEGER*2 resp_size, answer_size, total_size, remndr_size
PARAMETER (resp_size = 100, answer_size = resp_size-2,

+ total_size = 2000, remndr_size = total_size - resp_size)
C

INTEGER*2 response(total_size/2), response_key,
+ answer (answer s i ze /2) , r ema inde r (remndr s i ze /2)

5-11

Programmer's Guide to Prime Networks

C
EQUIVALENCE (response_key, response(1)),

+ (a n s w e r (1) , r e s p o n s e (2)) ,
+ (r e m a i n d e r (1) , r e s p o n s e (r e s p _ s i z e / 2 + l))

C RETURNED is the array to catch the retrieved User Data field
C (rudat). By equivalencing, the interesting response is extracted
C from behind the four protocol id bytes.
C

INTEGER*2 return_size
PARAMETER (return_size = resp_size + 4)

C
INTEGER*2 returned(return_size/2)
EQUIVALENCE (response (1), returned(3))

C
LIST

C QUIT_HANDLING.INS.F77, Defines variables for the quit-handler to
C issue a virtual circuit clear and return to the main program.
C

NOLIST
C

COMMON /QUITVARS/ user_vc, restart_stmt, confirmed_stmt
INTEGER*2 user_vc
REAL*8 restart_stmt, confirmed_stmt

C
LIST

C MULTI_VC.INS.F77, multiple VC database for update server
C

NOLIST
C
C History:
C 1983-09 B. Lindblad Initial coding
C 198 4-10 B. Lindblad Removed external declarations for
C f u n c t i o n s ; t h e y a r e i n t h e c a l l i n g p r o g r a m s
C

INTEGER*2 pool_size
PARAMETER (pool_size = 10)

C

5-12

IPCF Programming Examples

~s COMMON /ADMNVC/ next_free, total_used
COMMON /MANYVC/ in_use(pool_size),

+ v c _ i d (p o o l _ s i z e) ,
+ v c _ s t a t u s (2 , p o o l _ s i z e) ,
+ x m i t _ s t a t u s (p o o l _ s i z e) ,
+ z e r o _ t i m e (p o o l _ s i z e)

LOGICAL*2 in_use
INTEGER*2 next_free, total_used, vc_id, vc_status,

+ x m i t _ s t a t u s , z e r o _ t i m e

EXTERNAL INITVC, FREEVC, ORGSTAMP

LIST

C UPDATE_DATA.INS.F77, Per virtual circuit update message buffers.
C This requires previous insert of (multi_vc fsx_data).ins.f77.
C

NOLIST
C

COMMON /UPDIN/ in_msg(msg_size, pool_size)
INTEGER*2 in_msg

C
COMMON /UPDOUT/ out_msg(total_size, pool_size)
INTEGER*2 out_msg

C
LIST

User Program

C FSJJSER.F77 Sample program for fast-select PRIMENET connections.
C
C This is the interactive user program, to be run when needed.
C Any user action initiates a Fast Select call to one of
C the query_servers, that either responds or passes the call to
C the update_server.
C
C Short replies arrive back with a fast clear. Updates and long
C answers are both accepted and yield further data transfer,
C in the form of one long message. On receiving this, the user
C acknowledges by a normal clear with appropriate diagnostic.
C
C History:
C 1983-09 B. Lindblad Initial coding
C 198 6-10 B. Lindblad Added missing code, handling busy updateserver
C 198 6-11 B. Lindblad Added on unit for QUIT$, permitting user abort

5-13

Programmer's Guide to Prime Networks

C
PROGRAM main

C
$INSERT syscom>x$keys.ins.ftn
$INSERT *>fsx_data.ins.f77
$INSERT *>qui t_handl ing. ins. f77
C

INTEGER*2 vc_status(2), rcv_stat(3), statword, t imeout,
+ a c t u a l _ r e t _ s i z e , t e m p , c l r _ c a u s e , c l r d i a g

INTEGER*2 X$WAIT

INTRINSIC INTS, INTL, LT, RT
EXTERNAL X$WAIT, X$FCON, XRCV, XCLR, X$CLRA, SLEEP$,

+ TNOU, MKON$P, MKLB$F
EXTERNAL getinput, dispdata, dispansw, noserver,

+ b u s y u p d a t e s e r v e r , n e p r , q u i t _ c l e a r
C
C
C Create onunit for QUIT$; do a virtual circuit clear and return
C to the program's user command level.
C We have to create labels for nonlocal "goto" statements.
C

CALL MK0N$P('QUIT$',INTS(5),quit_clear)
CALL MKLB$F($1, restart_stmt)
CALL MKLB$F($240, confirmed_stmt)

C
C
C Keep executing this until the user says 'exit'.
C
1 C O N T I N U E
C
C Get the user input - this will include screen formatting, etc.
C

CALL getinput(message)
C

IF (action_key .EQ. exit) RETURN
C
C Whether the user asks for a query or an update, the program calls
C the query-server.
C

CALL X$FCON(XK$NAM+XKANY, XKACC, user_vc,
+ query_port , server_node, INTS(6), message, msg_size,
+ v c _ s t a t u s ,
+ r e t u r n e d , r e t u r n _ s i z e , a c t u a l _ r e t _ s i z e)

C

5-14

IPCF Programming Examples

r

C Status test:
C XS$CMP and XS$CLR imply completed connection;
C XS$IP: wait for Primenet to complete the connection,
C then get new copy of the VC status;
C All others: crash. Clear everything, return to command level.
C
1 0 0 t e m p = v c _ s t a t u s (l) / * G e t l o c a l c o p y
C

IF (temp .EQ. XS$IP) THEN
timeout = X$WAIT(INTS(100)) /* Arbi trary 10 seconds
GO TO 100

ELSE IF (temp .EQ. XS$CLR) THEN
GO TO 150

ELSE IF (temp .EQ. XS$CMP) THEN
GO TO 200

ELSE
CALL nepr(vc_status, INTS(2))
GO TO 9000

ENDIF
C

C Some sort of connection success has occured (XS$CLR or XS$CMP).
C If the connect was completed, this means that the server
C accepted the call, to do further data transfer.
C If the connect was cleared, this could either be by a failure,
C or by a Fast Select clear.
C In the latter case, there is data to display.
C
C
C Cleared connection:
C IF the cause and diagnostic are correct, display results and
C restart, else just restart.
C
150 clr_cause = LT(vc_status(2), 8)

clr_diag = RT(vc_status(2) , 8)
C

IF (clr_cause .EQ. CC$CLR .AND. clr_diag .EQ. CD$SHR) THEN
CALL dispansw(response)
GO TO 1

ELSE IF (clr_cause .EQ. CC$CLR .AND. clr_diag .EQ. CD$PNA) THEN
CALL noserver
GO TO 1

ELSE IF (clr_cause .EQ. CC$CLR .AND. clr_diag .EQ. CD$NVC) THEN
CALL busyupdateserver
GO TO 1

5-15

Programmer's Guide to Prime Networks

ELSE
CALL nepr(vc_status, INTS(2))
GO TO 400

ENDIF
C
C
C Accepted connection:
C Issue receive call for returned data, then display the result.
C The invented protocol controls the choice of array to supply to
C X$RCV.
C EITHER it is a long answer, in which case the beginning is
C already here,
C OR it is just the key "update_started" and the whole answer,
C except the action key, will come later.
C
200 IF (actual_ret_size .LT. INTS(6)) GO TO 400 /* Key missing!!
C
210 IF (response_key .EQ. update_started) THEN

CALL X$RCV(user_vc, answer, answer_size + remndr_size,
+ r c v _ s t a t)

ELSE
CALL X$RCV(user_vc, remainder, remndr_size, rcv_stat)

ENDIF
C
C Status test:
C XS$IP means still coming in, wait a bit (on network semaphore);
C XS$CMP is OK - all done, now ack by a clear and then restart;
C XS$RST means Reset occured: clear the circuit;
C XS$CLR is not anticipated - restart;
C XS$MEM means attempt failed, retry the receive shortly;
C all others fatal, crash!
C
220 temp = rcv_stat(l)

IF (temp .EQ. XS$IP) THEN
t i m e o u t = X $ W A I T (2 0) / * A r b i t r a r y 2 s e c o n d s
GO TO 220

ELSE IF (temp .EQ. XS$CMP) THEN
GO TO 230

ELSE IF (temp .EQ. XS$CLR) THEN
CALL nepr(vc_status, INTS(2))
GO TO 400

ELSE IF (temp .EQ. XS$MEM) THEN
C A L L S L E E P $ (I N T L (1 0 0 0)) / * Wa i t a s e c . . .
GO TO 210

5-16

IPCF Programming Examples

ELSE IF (temp .EQ. XS$RST) THEN /* Reset occured, clear
CALL X$CLR(user_vc, CD$RST, statword)
IF (statword .NE. XS$CMP) THEN

CALL nepr(statword, INTS(l))
GO TO 9000

ENDIF
G O T O 2 4 0 / * A w a i t c o n fi r m a t i o n

ELSE
CALL nepr(rcv_stat, INTS(3))
CALL nepr(vc_status, INTS(2))
GO TO 9000

ENDIF
C
C Receive complete; now send acknowledging clear, and display
C data. Tell the display routine the entire response length.
C
230 IF (response_key .EQ. update_started) THEN

CALL X$CLR(user_vc, CD$EOU, statword)
CALL dispdata(answer, resp_size + rcv_stat(3))

ELSE
CALL X$CLR(user_vc, CD$LNG, statword)
CALL dispdata(answer, rcv_stat(3))

ENDIF
C
C Verify correct status for the clear request.
C The only reasonable return code here is XS$CMP.
C

IF (statword .EQ. XS$CMP) THEN
G O T O 2 4 0 / * A w a i t c o n fi r m a t i o n

ELSE
CALL nepr (statword, INTS(D)
G O T O 9 0 0 0 / * F a t a l e r r o r

ENDIF
C
C Tidy up for restart: Await confirmation of requested clear.
C If not arrived in 30 seconds (will the user stand more?),
C forget the circuit and restart.
C
240 IF (vc_status(l) .NE. XS$CLR) THEN

PRINT 2000
timeout = X$WAIT(INTS(300))

ENDIF
2000 FORMAT ('Disconnecting... ')
C

IF (vc_Status(l) .NE. XS$CLR)
+ P R I N T 2 0 1 0

5-17

Programmer's Guide to Prime Networks

2010 FORMAT ('Clear request unconfirmed - restarting')
CALL X$CLRA
G O T O 1 / * R e s t a r t

C
C
C - - - - - - - -
C Protocol problems or network transmission problems
C
400 CALL TNOU('Transfer failure', INTS(16))

CALL X$CLRA
G O T O 1 / * . R e s t a r t

C
C
C = - - - - - - -
C Fatal errors: crash exit to Primos command level
C after global network cleanup.
C
9000 CALL TNOU('Network failure', INTS(15))

CALL X$CLRA
RETURN

C
END

C QUIT_CLEAR.F77, Quit handler for user fast-select example program
C
C This quit-handler clears the user's virtual circuit with a
C specific "aborted" diagnostic byte and then returns to the
C main command interface.
C
C H i s t o r y : * ^ ^
C 1 9 8 6 - 1 1 B . L i n d b l a d I n i t i a l c o d i n g '
C

SUBROUTINE quit_clear(ptr)
C

INTEGER*4 ptr
C
$INSERT fsx_data.ins.f77
$INSERT qui t_handl ing. ins. f77
$INSERT syscom>x$keys.ins.ftn
C

EXTERNAL XCLR, XCLRA, PL1$NL, TNOU, nepr
INTRINSIC INTS
INTEGER*2 statword

c • • ^
C Clear the circuit, telling the server that user lost patience.

5-18

IPCF Programming Examples

C
CALL X$CLR(user_vc, CD$QIT, statword)
CALL TNOU('Abort ing t ransact ion. . . ' , INTS(23))

C
C Verify correct status for the clear request.
C Reasonable return codes here are XS$CMP,
C and XS$BVC, if the circuit was otherwise cleared.
C In either case, return to suitable place in main program.
C

IF (statword .EQ. XS$CMP) THEN
CALL PLl$NL(confirmed_stmt) /* Fal l into main program

ELSE IF (statword .EQ. XS$BVC) THEN
C A L L X $ C L R A / * S a f e t y c l e a n u p
CALL PLl$NL(restart_stmt)

ELSE
CALL nepr(s tatword, INTS(l)) / * Fata l er ror - pr in t i t !
C A L L P L l $ N L (r e s t a r t _ s t m t) / * T h e n f a l l b a c k

ENDIF

END

Query Server

C QUERY_SERVER.F77 Example server program for Fast Select
C PRIMENET connections.
C
C The query_server program is expected to run as several
C parallel processes. Therefore it assigns its port for
C one call only, and always reassigns on completed service.
C Enough servers are expected to be running to ensure almost
C 100 percent availablil ity. If, however, the application
C runs out of servers, PRIMENET's clearing with CD$PNA
C (port not assigned) will indicate no servers available.
C
C The first action is to detect updates, and to pass these
C to the update server. If the pass fails, the circuit
C is cleared with a special diagnostic.
C
C Depending on the query type the server will either send
C a short answer by a Fast Select clear, or accept the call
C with part of the answer, and then send the rest separately.
C To ensure that the full answer gets through, the user clears
C in this case, thereby acknowledging. The server has a safety
C timeout as well.
C
C History:
C 1983-09 B. Lindblad Initial coding
C 1986-10 B. Lindblad Corrected error regarding returned VC status
C o n t o o e a r l y u s e r / n e t w o r k c l e a r

5-19

Programmer's Guide to Prime Networks

C
PROGRAM main

C
$INSERT syscom>x$keys.ins.ftn
$INSERT *>fsx_data.ins.f77
C

INTEGER*2 statword, status(2), vc_status(2), xmt_status,
+ answer_key, server_vc, dummy_port , rn_len, msg_bytes,
+ r e m _ l e n g t h , c l r _ c a u s e , c l r _ d i a g , t i m e o u t ,
+ not_used, must_be_0, temp, junk

CHARACTER*6 remote_node
LOGICAL*2 long_flag

PARAMETER (must be 0 = 0)

INTRINSIC INTL, INTS, LT, RT
INTEGER*2 X$WAIT
EXTERNAL X$ASGN, X$WAIT, X$FGCN, X$FCLR, X$FACP, XLGWC,

+ X$TRAN, X$CLR, X$CLRA, SLEEP$
EXTERNAL dbanswer, nepr

C
C
C Restart point - assign the query-server port to take ONE call
C
1 CALL X$ASGN(query_port, INTS(l), statword)
C
C Error test: XS$CMP or XS$QUE are satisfactory,
C for all others fatal crash.
C

IF (statword .NE. XS$CMP .AND. statword .NE. XS$QUE) THEN
CALL nepr(statword, INTS(l))
GO TO 9000

ENDIF
C
C Wait for somebody to call. When woken up from
C the network semaphore, find out about the call.
C (For safety, make routine wake-up once every minute.)
C
10 timeout = X$WAIT(INTS(600))

CALL X$FGCN(XK$NAM, answer_key, server_vc, dummy_port,
+ r e m o t e _ n o d e , I N T S (6) , r n _ l e n ,
+ message, msg_size, msg_bytes,
+ s t a t u s)

C
C Status test: XS$NOP means spurious wake up and therefore to wait more,
C X S $ C M P m e a n s c a l l t o h a n d l e ,
C f o r a l l o t h e r s f a t a l c r a s h .

5-20

IPCF Programming Examples

r

c
temp = status(1)
IF (temp .EQ. XS$NOP) THEN

GO TO 10
ELSE IF (temp .EQ. XS$CMP) THEN

GO TO 100
ELSE

CALL nepr(status, INTS(2))
GO TO 9000

ENDIF
C
C
C Handle the call.
C Sort out updates, pass them to the query server.
C Otherwise, send the message to the database,
C retrieve the answer, and analyze its length.
C Long answers force call to be accepted, with later
C transmission of the actual answer,
C short ones are "fast_cleared", carrying the answer.
C
100 IF (messaged) .EQ. update) GO TO 300
C

CALL dbanswer(message, response, long_flag, rem_length)
IF (long_flag) GO TO 200

C
C
C Short answer <-> fast clear:
C Note: here we use the "returned" aggregate array, not to
C place data overlapping PRID field.
C Also the diagnostic code should be CD$SHR, for the user
C program's validity test.
C
110 CALL X$FCLR(server_vc, CD$SHR, returned, return_size, statword)
C
C Status test:
C XS$CMP is OK - all done, restart.
C NOTE: There is no vc_status array set up yet, so we cannot
C c h e c k f o r c l e a r c o n fi r m a t i o n !
C XS$MEM means attempt failed, retry soon.
C XS$BVC occurs if user side cleared too quickly.
C For all others - fatal crash.

5-21

Programmer's Guide to Prime Networks

temp = statword
IF (temp .EQ. XS$CMP) THEN

GO TO 8000
ELSE IF (temp .EQ. XS$MEM) THEN

C A L L S L E E P $ (I N T L (1 0 0 0)) / * Wa i t a s e c . . .
GO TO 110

ELSE IF (temp .EQ. XS$BVC) THEN
GO TO 8000

ELSE
CALL nepr(statword, INTS(l))
GO TO 9000

ENDIF
C
C
C Long answer:
C Accept the call, and then transmit the rest of the long answer.
C
200 CALL X$FACP(server_vc, response, resp_size, vc_status)
C
C Status test:
C XSIDL/XSCMP is OK - ready to transmit data.
C XS$MEM means attempt failed, retry shortly.
C XS$BVC means the user cleared 'too early'.
C XS$CLR is not expected, but let the server live
C t o d o f u r t h e r w o r k .
C For all others, fatal crash.
C

t e m p = v c _ s t a t u s (l) / * G e t l o c a l c o p y
IF (temp .EQ. XS$IDL .OR. temp .EQ. XS$CMP) THEN

GO TO 210
ELSE IF (temp .EQ. XS$MEM) THEN

C A L L S L E E P $ (I N T L (1 0 0 0)) / * W a i t a s e c . . .
GO TO 200

ELSE IF (temp .EQ. XS$BVC) THEN
CALL nepr(vc_status, INTS(2))
G O T O 8 0 0 0 / * T o r e s t a r t

ELSE IF (temp .EQ. XS$CLR) THEN
CALL nepr(vc_status, INTS(2))
G O T O 8 0 0 0 / * T o r e s t a r t

ELSE
CALL nepr(vc_status, INTS(2))
G O T O 9 0 0 0 / * F a t a l , d e a t h

ENDIF
C
210 CALL X$TRAN(server_vc, XT$LV0,

+ remainder, rem_length - resp_s ize, xmt_sta tus)

5-22

IPCF Programming Examples

r

c
C Status test:
C XS$IP means still transmitting, wait some time.
C XS$CMP is OK - all done, now await confirming clear and restart.
C XS$BVC - user side aborted with clear, log it and restart.
C XS$CLR - check if it was the "ack", then restart the server.
C XS$RST - reset occured, clear the circuit.
C XS$MEM means attempt failed, retry shortly.
C For all others, fatal crash.
C
220 temp = xmt_status

IF (temp .EQ. XS$IP) THEN
t i m e o u t = X $ W A I T (2 0) / * A r b i t r a r y 2 s e c
GO TO 220

ELSE IF (temp .EQ. XS$CMP) THEN
GO TO 230

ELSE IF (temp .EQ. XS$BVC) THEN
CALL nepr(vc_status, INTS(2))
G O T O 8 0 0 0 / * R e s t a r t i n g . . .

ELSE IF (temp .EQ. XS$CLR) THEN
GO TO 240

ELSE IF (temp .EQ. XS$MEM) THEN
C A L L S L E E P $ (I N T L (1 0 0 0)) / * W a i t a s e c . . .
GO TO 210

ELSE IF (temp .EQ. XS$RST) THEN /* On reset, clear
CALL X$CLR(server_vc, CD$RST, statword)
IF (statword .NE. XS$CMP) THEN

CALL nepr(statword, INTS(l))
GO TO 9000

ENDIF
G O T O 7 0 0 0 / * A w a i t c o n fi r m a t i o n

ELSE
CALL nepr(vc_status, INTS(2))
G O T O 9 0 0 0 / * F a t a l , d e a t h

ENDIF
C
C Transmit complete. Now wait for the acknowledging clear,
C using CD$LNG diagnostic. If too long a time passes,
C then clear from this end, and restart.
C (Ensure the network semaphore is drained before starting
C waiting period of 2 minutes maximum.)
C
230 timeout = X$WAIT(INTS(1))

IF (vc_Status(1) .EQ. XS$CLR) THEN
G O T O 2 4 0 / * V e r i f y d i a g n o s t i c

C

5-23

Programmer's Guide to Prime Networks

ELSE
timeout = X$WAIT(INTS(1200)) /* Give user 2 minutes
IF (vc_status(l) .EQ. XS$CLR) THEN

G O T O 2 4 0 / * V e r i f y d i a g n o s t i c
ELSE

PRINT 2300
CALL X$CLR(server_vc, CD$TMO, statword)

C
C The only reasonable return code here is XS$CMP.
C

IF (statword .EQ. XS$CMP) THEN
G O T O 7 0 0 0 / * A w a i t c o n fi r m a t i o n

ELSE
CALL nepr(statword, INTS(l))
G O T O 9 0 0 0 / * F a t a l e r r o r

ENDIF
ENDIF

ENDIF
2300 FORMAT ('Forced server clear...')
C
C Verify cleared by user with correct diagnostic. If not
C correct, print warning message, then restart in any case.
C
240 clr_cause = LT(vc_status(2), 8)

clr_diag = RT(vc_status(2), 8)
C

IF (clr_cause .NE. CC$CLR .OR. clr_diag .NE. CD$LNG)
+ CALL nep r (vc_s ta tus , INTS(2))

GO TO 8000
C

C Pass over an update: This is done before call acceptance, and
C by port number. It requires XLGWC, and since the original call
C request packet is still around, we are not allowed to try
C providing a new one.
C
300 CALL XLGWC (XK$PRT, server_vc, not_used, must_be_0, must_be_0,

+ u p d a t e _ p o r t ,
+ j u n k , I N T S (0) , j u n k , I N T S (0) , / * U n s u p p l i e d
+ j u n k , I N T S (0) , j u n k , I N T S (0) , / * p a c k e t
+ j u n k , I N T S (0) , / * fi e l d s
+ s t a t w o r d)

C
C Status test:
C XS$CMP is OK - all done, restart from the beginning.
C XS$UNK implies that the update-server is not running:
C c l e a r w i t h d i a g n o s t i c C D $ N V C .

5-24

IPCF Programming Examples

C XS$MEM means attempt failed, retry shortly.
C XS$BVC will occur if user side aborted too early by clearing
C For all others, fatal crash.
C

temp = statword
IF (temp .EQ. XS$CMP) THEN

GO TO 8000
ELSE IF (temp .EQ. XS$BVC) THEN

CALL nepr (s ta tword, INTS(l)) / * Log i t
GO TO 8000

ELSE IF (temp .EQ. XS$MEM) THEN
CALL SLEEP$(INTL(1000))
GO TO 300

/* Wait a sec,

ELSE IF (temp .EQ. XS$UNK) THEN
CALL X$CLR(server vc, CD$NVC, statword)

C The only reasonable return code here is XS$CMP
NOTE: There is no vc_status array set up yet,

check for clear confirmation!

IF (statword .EQ. XS$CMP) THEN
GO TO 8000

ELSE
CALL nepr (statword, INTS(D)
GO TO 90 00

ENDIF

so we cannot

/* JRestart immediately

/* Fatal error

ELSE

ENDIF

CALL nepr(statword, INTS(l))
GO TO 9000 /* Fatal error

C
C
c = = = - =
C Tidy up for restart:
C Await confirmation of requested clear.
C If not arrived in 2 minutes, forget the circuit and restart
C (First wait a very short time, to ensure the network semaphore
C gets drained from previous notifications.)
C
7000 timeout = X$WAIT(INTS(1))

IF (vc_Status (1) .EQ. XS$CLR) THEN
G O T O 8 0 0 0 / * T h a t ' s i t !

C

5-25

Programmer's Guide to Prime Networks

ELSE
timeout = X$WAIT(INTS(1200))
IF (vc_status(l) .EQ. XS$CLR) THEN

GO TO 8000
ELSE

IF (timeout .NE. 0) PRINT 7010
CALL nepr(vc_status, INTS(2))
PRINT 7020
GO TO 8000

ENDIF
ENDIF

C
7 010 FORMAT ('Two minutes time-out...')
7020 FORMAT ('Clear request unconfirmed - restarting')
C
C
C General restart code: Ensure we start in fresh environment by
C calling X$CLRA
C
8 0 0 0 C A L L X $ C L R A / * H a e n g s l e n & l i v r e m . . .

GO TO 1
C
C
C * * * * *
C Fatal error - print message and die...
C
9000 PRINT 9010
9010 FORMAT ('Fatal error')

CALL X$CLRA
RETURN

C
END

Update Server:
C UPDATE_SERVER.F77 Example server program for Fast Select
C PRIMENET connections.
C
C There is only one update server function, which thus must be
C able to handle multiple virtual circuits.
C
C The life of each individual virtual circuit is:
C X$FGCN -> X$FACP -> do update -> X$TRAN, wait for XS$CMP ->
C -> wait for clear request -> back to free pool...
C In case of the user failing to clear, there must also be a
C timeout mechanism for the virtual circuit to be released.
C

5-26

IPCF Programming Examples

C A mechanism for allocating and releasing sets of status arrays
C per VC is used, making use of the variable 'next_free'. Since
C only a finite pool of VC-s can be run, calls, arriving when the
C pool is fully used, are cleared, with the diagnostic CD$NVC.
C
C The main structure of this server is to run a service loop,
C paced by the network semaphore. On wake_up it will look for
C new connections, and then check on all active virtual circuits.
C
C History:
C 1983-09 B. Lindblad Initial coding
C 1986-10 B. Lindblad Corrected error regarding returned VC status
C o n t o o e a r l y u s e r / n e t w o r k c l e a r
C

PROGRAM main
C
$INSERT syscom>x$keys.ins.ftn
$INSERT *>fsx_data.ins.f77
$INSERT *>mult i_vc. ins.f77
$INSERT *>update_data.ins.f77
C

LOGICAL*2 GETVC
INTEGER*2 AGE

C
INTEGER*2 statword, status(2), server_vc, answer_key,

+ dummy_por t , rn_ len , msg_bytes , c l r_cause, c l r_d iag ,
+ j unk , i ndex , upda te_ leng th , t emp , i

CHARACTER*6 remote node

INTRINSIC INTS, INTL, LT, RT
EXTERNAL X$ASGN, X$WAIT, X$FCLR, X$FACP, X$TRAN, X$CLR,

+ X$CLRA, X$FGCN, SLEEP$
EXTERNAL do_updat, nepr, getvc, age

C
C Ini t ia l ize the v i r tual c i rcui t pool !
C

CALL initvc
C
C Assign the update-server port to take ALL calls
C

CALL X$ASGN(update_port, INTS(O), statword)
C
C Error test: XS$CMP is satisfactory.
C For all others, fatal crash. (XS$QUE is not legal, since
C there shall be only one update server.)
C

5-27

Programmer's Guide to Prime Networks

IF (statword .NE. XS$CMP) THEN
CALL nepr(statword, INTS(l))
GO TO 9000

ENDIF
C
C
C S TA R T O F M A I N S E R V I C E L O O P. - - - - - - - - - - - - - - - - -
C Wait on network event, five_second safety time-out.
C (NOTE: This timeout MUST be short, since it controls
C the speed of servicing active virtual circuits.)
C
10 CALL X$WAIT(INTS(50))
C

C Look for new incoming calls. If a VC 'slot' is available,
C accept the call, else clear it.
C Carry on until calls are exhausted or when no VC slot available
C
50 CALL X$FGCN(XK$NAM, answer_key, server_vc, dummy_port,

+ r e m o t e _ n o d e , I N T S (6) , r n _ l e n , / * C o l l e c t c a l l
+ message, msg_size, msg_bytes,
+ s t a t u s)

C
C Status test:
C XS$CMP means call to handle.
C XS$NOP means spurious wake up or calls exhausted, continue to
C do the service loop for active VC-s.
C For all others, fatal crash.
C

IF (status(1) .EQ. XS$NOP) THEN
GO TO 200

ELSE IF (status (1) .EQ. XS$CMP) THEN
GO TO 100

ELSE
CALL nepr(status, INTS(2))
GO TO 9000

ENDIF
C
C
C Handle the call. If VC available, accept it, else clear.
C
100 IF (.NOT. getvc(server_vc, index)) THEN
C

CALL X$CLR(server_vc, CD$NVC, statword)
C
C The only reasonable return code here is XS$CMP

5-28

IPCF Programming Examples

r

C NOTE: There is no vc_status array set up yet, so we cannot
C c h e c k f o r c l e a r c o n fi r m a t i o n !
C

IF (statword .EQ. XS$CMP) THEN
G O T O 5 0 / * L o o k f o r f u r t h e r c a l l s

ELSE
CALL nepr(statword, INTS(l))
G O T O 9 0 0 0 / * F a t a l , d e a t h

ENDIF
C

ELSE
out_msg(1,index) = update_started

105 CALL X$FACP(server_vc, out_msg(1, index), INTS(2),
+ v c _ s t a t u s (l , i n d e x))

C
C Status test:
C XSIDL/XSCMP is OK - all done, restart from the beginning.
C XS$MEM means attempt failed, retry.
C XS$BVC occurs if other end cleared before we accept.
C XS$CLR is not expected, but let us carry on in that case.
C For all others, fatal crash.
C

t e m p = v c _ s t a t u s (1 , i n d e x) / * G e t l o c a l c o p y
C

IF (temp .EQ. XS$IDL .OR. temp .EQ. XS$CMP) THEN
GO TO 110

ELSE IF (temp .EQ. XS$MEM) THEN
CALL SLEEP$(INTL(1000)) / * Wai t a sec. . .
GO TO 105

ELSE IF (temp .EQ. XS$BVC) THEN
C
C Other end cleared too quickly, so VC does not exist any more.
C Free it at once.
C

CALL freeve(index)
GO TO 50

ELSE IF (temp .EQ. XS$CLR) THEN
C
C Unexpected. Look for more calls. The virtual circuit will be
C released in the "test if cleared" loop further below.
C

GO TO 50
ELSE

CALL nepr(vc_status(1, index), INTS(2))
G O T O 9 0 0 0 / * F a t a l d e a t h

ENDIF
C

5-29

Programmer's Guide to Prime Networks

C
C Circuit set up. Get the update done, transmit the update message,
C and start the clock for "time since transmit".
C
C (Note that the following do_updat call implies that "message" is
C copied to "in_msg(.,index)" BEFORE do_updat returns, so that
C "message" then can be reused.)
C
110 CALL do_updat (message, msg_bytes, index, update_length)
C

CALL X$TRAN(server_vc, XT$LV0,
+ o u t _ m s g (2 , i n d e x) , u p d a t e _ l e n g t h , x m i t _ s t a t u s (i n d e x))

CALL orgstamp(index)
C
C To keep service speed up, we should NOT wait for XS$CMP here,
C but only sort out fatal errors. 'Expected' statuses will be
C handled later in the general all-VC loop.
C

temp = xmit_status(index)
IF (temp .EQ. XS$IP .OR. temp .EQ. XS$CMP .OR.

+ temp .EQ. XS$CLR .OR. temp .EQ. XS$BVC .OR.
+ temp .eq. XS$RST) THEN

G O T O 5 0 / * L o o k f o r m o r e c a l l s
ELSE

CALL nepr(xmit_status(index), INTS(l))
G O T O 9 0 0 0 / * F a t a l - d i e . . .

C
E N D I F / * x m i t - s t a t u s

C
E N D I F / * c l e a r / a c c e p t

C
C

C Loop for running VC-s:
C This loop MUST ensure that all VC-s terminate properly and are
C released.
C - If the transmit completes and the user does not clear,
C the server should clear;
C - if the transmit does not complete, the server should clear;
C - if resets occur, the server should clear.
C In this way the circuit will always have a clear request;
C the timer mechanism of PRIMENET (19.3 onwards) will then ensure
C that the confirming state XS$CLR is reached (with appropriate
C diagnostic), and the VC will be released.
C
200 DO 250 i = 1, pool_size

I F (i n u s e (i)) T H E N / * S k i p i n a c t i v e c i r c u i t s

5-30

IPCF Programming Examples

r

c
C Sort out VC-s, that have been cleared. Print error message if
C clearing cause/diagnostic are wrong. Free VC in any case.
C

temp = vc_status(l, i)
IF (temp .EQ. XS$CLR) THEN

C
clr_cause = LT(vc_status(2, i), 8)
clr_diag = RT(vc_status(2, i) , 8)
IF (clr_cause .NE. CC$CLR .OR. clr_diag .NE. CD$EOU)

+ C A L L n e p r (v c _ s t a t u s , I N T S (2))
CALL freeve(i)

C
C Clear a virtual circuit that was reset. The circuit will then be
C released in a subsequent test loop.
C

ELSE IF (temp .EQ. XS$RST) THEN
CALL X$CLR(vc_id(i), CD$RST, statword)
IF (statword .NE. XS$CMP) THEN

CALL nepr(statword, INTS(l))
GO TO 9000

ENDIF
C
C Now look at the transmit status.
C

ELSE
junk = xmit_status(i)

C
C We can neglect XS$RST and XS$CLR, since they were already trapped
C in the previous vc_status test.
C
C If this transmit has XS$BVC, the cause is likely to be a clear
C before the transmit was attempted. This should already have
C been detected in the previous vc_status test, but "just in case"
C ensure the circuit becomes free.
C

IF (junk .EQ. XS$BVC) THEN
CALL freeve(i)

C
C If the transmit does not complete in a reasonable time, we suspect
C a "hang". Clear the circuit, and to prevent repeats, CHANGE the
C TRANSMIT status to XS$CLR. The time limit is set to 5 minutes
C (arbi trary choice).
C

5-31

Programmer's Guide to Prime Networks

ELSE IF (junk .EQ. XS$IP .AND. age(i) .GE. INTS (5)) THEN
CALL X$CLR(vc_id(i), CD$TMO, statword)
IF (statword .NE. XS$CMP) THEN

CALL nepr(statword, INTS(l))
GO TO 9000

ENDIF
xmit_status(i) = XS$CLR

C
C Similarly, if the transmit completed but no clear arrives, again
C we clear a suspected "hang". To prevent repeats, CHANGE the
C TRANSMIT status to XS$CLR. The time limit is set to the same
C 5 minutes (arbitrary choice).
C

ELSE IF (junk .EQ. XS$CMP .AND. age(i) .GE. INTS (5)) THEN
CALL X$CLR(vc_id(i) , CD$TMO, statword)
IF (statword .NE. XS$CMP) THEN

CALL nepr(statword, INTS(l))
GO TO 9000

ENDIF
xmit status(i) = XS$CLR

E N D I F / * T r a n s m i t s t a t u s t e s t i n g

E N D I F / * V C s t a t u s t e s t i n g

E N D I F / * V C a c t i v e
C
250 CONTINUE
C
C All done. Go back to sleep
C

GO TO 10
C
rj * * * * *
C Fatal error - die...
C
9000 PRINT 9010
9010 FORMAT ('Fatal error!')

CALL X$CLRA
RETURN

C
END

5-32

IPCF Programming Examples

VC Pool handling

C HANDLE_VC.F77, subroutines to allocate update server VC-s
C
C History:
C 1983-09 B. Lindblad Initial coding
C 1986-11 B. Lindblad Added code to handle duplicates of a VC
C b e i n g u s e d
C
C INITVC - initialize the VC flag and status database

SUBROUTINE INITVC
C
$INSERT *>MULTI_VC.INS.F77
C

INTEGER*2 i
C

t o t a l _ u s e d = 0 / * N o a c t i v e
n e x t _ f r e e = 1 / * T r y t h i s o n e fi r s t

C
DO 10 i = 1, pool_size /* For all of them:
in_use(i) = .FALSE. /* Not in use

1 0 v c i d (i) = 0 / * s o n o k n o w n n u m b e r
RETURN
END

C GETVC - returns whether VC block available or not
C a l so flags dup l i ca te occu rence o f a VC
C

LOGICAL*2 FUNCTION GETVC(net_vc, this_index)
C
$INSERT *>MULTI_VC.INS.F77
C

INTEGER*2 net_vc, this_index, i
C

EXTERNAL TNOU, nepr
INTRINSIC INTS

IF (total_used .LT. pool_size) THEN

g e t v c = . T R U E . / * I n d i c a t e s u c c e s s
th i s_ index = nex t_ f ree / * Te l l ca l l e r a l l oca ted s lo t
in_use(next_free) = .TRUE.
vc_id(next_free) = net_vc
CALL orgstamp(next_free) /* Set start of l i fe

5-33

Programmer's Guide to Prime Networks

C Detect duplicates of this VC, free them, assuming they were
C properly cleared previously without this server detecting on time
C

DO 5 i = 1, pool_size
IF (in_use(i) .AND. i .NE. this_index) THEN

CALL TNOU('Freeing duplicate use of VC, INTS(27))
CALL nepr(vc_status(1, i) , INTS(2)) / * Log last

C / * V C s t a t u s
CALL freevc(i)

ENDIF
5 C O N T I N U E
C
C Now prepare for next allocation call
C

total_used = total_used + 1
IF (total_used .LT. pool_size) THEN

DO 10 i = 1, pool_size
IF (in_use(i)) GO TO 10
next_free = i
RETURN

1 0 C O N T I N U E
ELSE

next_free = 0
RETURN

ENDIF
C

ELSE
getvc = . fa lse . / * Jnd ica te poo l fu l l y used
RETURN

ENDIF
END

C FREEVC - return a VC block to the unused state
C

SUBROUTINE FREEVC(index)
C
$INSERT *>MULTI_VC.INS.F77
C

INTEGER*2 index
C

i n _ u s e (i n d e x) = . FA L S E . / * F r e e i t
C
C If pool WAS fully used, this must become next to use
C

IF (total_used .EQ. pool_size) next_free = index
C

5-34

IPCF Programming Examples

r

total_used = total_used - 1 /* Out of used count
RETURN
END

C ORGSTAMP - set origin time for a VC (next full minute)
C

SUBROUTINE ORGSTAMP(index)
C
$INSERT *>MULTI_VC.INS.F77
C

INTEGER*2 index, arr(4)
INTRINSIC INTS
EXTERNAL TIMDAT

C
CALL TIMDAT(arr, INTS(4))
zero_time(index) = arr(4) + 1
RETURN
END

C AGE - return lifelength since origin time for a VC
C

INTEGER*2 FUNCTION AGE(index)
C
$INSERT *>MULTI_VC.INS.F77
C

INTEGER*2 index, arr(4)
INTRINSIC INTS
EXTERNAL TIMDAT

C
CALL TIMDAT(arr, INTS(4))
age = arr(4) - zero_time(index)
RETURN
END

A Common Network Error Message Routine

C NEPR.F77, routine to print network status arrays
C
C This routine gives a formatted output for various
C network status arrays. Its action depends on the number
C of words in the array.
C
C Word 1 translated to XS$xxx
C Word 2 given in decimal and split on CCXXX/CDXXX
C Word 3 given in decimal
C

5-35

Programmer's Guide to Prime Networks

C History:
C 1983-09 B. Lindblad Initial coding
C 1986-10 B. Lindblad Added check for undefined VC statuses
C 1986-11 B. Lindblad Added printout for new clearing diagnostic
C

SUBROUTINE NEPR(array, no_words)
C

INTEGER*2 array(l), no_words
C
$INSERT *>fsx_data.ins.f77
C

INTRINSIC INTS, LT, RT
EXTERNAL TNOUA, TODEC, TOOCT, TONL

C
INTEGER*2 cdvalue(6), i
CHARACTER*6 xsname(-1:14), cdname(6)
DATA xsname/'XS$NET','XS$CMP','XS$IP' , 'XS$BVC,'XS$BPM' ,

+ 'XS$CLR','XS$RST','XS$IDL' , ' XS$UNK' , ' XS$MEM',
+ 'XS$NOP' , 'XS$ILL ' , 'XS$DWN', 'XS$MAX' , 'XS$QUE' , 'XS$FCT' /

DATA cdvalue/CDSHR, CDLNG, CDEOU, CDTMO, CDRST, CDNVC,
+ C D $ Q I T /

DATA cdname/'CD$SHR','CD$LNG', 'CD$EOU','CD$TMO','CD$RST',
+ ' C D $ N V C , ' C D $ Q I T ' /

IF (no words .LT. 1 .OR. no words .GT. 3) RETURN

IF (array(l) .LT. -1 .OR. array(l) .GT. 14) THEN
PRINT 8990, array(l)

8990 FORMAT ('Undefined status code: ',16)
ELSE

PRINT 9000, xsname(array(1))
9000 FORMAT ('Returned status code: ',A6)

ENDIF
IF (no_words .EQ. 1) RETURN

C
CALL TNOUA('Second word (dec): ', INTS(19))
CALL TODEC(array(2))
CALL TONL
CALL TNOUA(' (as CC$/CD$) : ' , INTS (26))
CALL TOOCT(LT(array(2), 8))
CALL TNOUA ('- ', INTS(D)
CALL TOOCT(RT(array(2), 8))
DO 10 i = 1,6
IF (RT(array(2),8) .EQ. cdvalue(i)) THEN

CALL TNOUA(' (', INTS(2))
CALL TNOUA(cdname(i), INTS(6))
CALL TNOUA(') ', INTS(1))

ENDIF

5-36

IPCF Programming Examples

10 CONTINUE
CALL TONL
IF (no_words .EQ. 2) RETURN

C
PRINT 9010, array(3)

9010 FORMAT ('Third word (dec): ',15)
RETURN
END

5-37

FTS Programming

The File Transfer Service includes three commands: FTR, FTOP, and FTGEN. These commands
comprise the user, operator, and System Administrator interfaces to FTS. In addition, the File
Transfer Service provides a program interface in the form of one subroutine, FT$SUB. This
chapter describes

• How to use the FT$SUB subroutine to submit, control, and determine the status of
transfer requests

• Several sample programs using FT$SUB

f* Declaring FT$SUB
You must use the following declaration for FT$SUB in PL/I programs.

del ft$sub entry (fixed bin(15),char(32) var,char(32) var, char(*) var,char(*)
var,char(255) var,char(32) var, fixed bin(15),ptr,fixed bin(15),ptr,fixed
bin(15), fixed bin(15));

The full calling sequence, rarely needed, is as follows.

call ft$sub (key,request_name,intemal_name,user_cmdl,prog_cmdl,
",queue,user_query,addr(request_data),l, addr(error_data),l,codc);

Specific calling sequences needed for particular uses of FT$SUB are described in the subsequent
sections of this chapter.

Defining Keys and Error Codes
To allow your program to represent FTS-specific numeric values for keys and error codes, you
must include in your program a statement that defines the appropriate FTS user's file. The format
of the statement depends on the language in which you are writing the program.
For a PL/I program, use the following statement:

%INCLUDE ,SYSCOM>FT$SUB.INS.PLl';

6-1

Programmer's Guide to Prime Networks

For a FORTRAN 77 (F77) program, use the following statement:

SINSERT 'SYSCOM>FT$SUB.INS.FTN'

For a FORTRAN (FTN) program, use the following statement:

SINSERT SYSCOM>FT$SUB.INS.FTN

Each statement causes the specified file to be logically included in your program. Each file
contains a list of statements that define constants.

Invoking the FT$SUB Subroutine
The FT$SUB subroutine allows eight different functions to be performed for any given
invocation. These transfer request functions are as follows:

• Submittal
• Parameter modification
• Canceling
• Aborting
• Holding
• Releasing
• Status retrieval of a user's requests
• Status retrieval of all requests on the system

These functions are distinguished by the first parameter of the FT$SUB subroutine. That
parameter is a fixed bin(15) value. There are eight legal values for the argument, corresponding to
the eight functions.
This section describes the categorization of these functions and fully describes the functions
themselves. This section also describes the use of internal vs. external names. Finally, this
section describes the following information returned by FT$SUB:

• The error code
• The request data structure
• The error data structure

Note
In general, user processes can operate only on their own submitted
requests. There are two exceptions, however. First, a user process with
the login ID SYSTEM can operate on any request. Second, any
process can request status and parameter information for any request
on the system.

6-2

FTS Programming

Function Categories
The eight functions of FT$SUB may be logically grouped into four categories. The first and
second functions, submission and parameter modification, are categories unto themselves —
submission and modification. The next four functions belong to a category called status change
operations, because they change only the status of a request. The final two functions belong to a
category called status retrieval operations, because their purpose is to retrieve information about
an existing transfer request, without changing the request itself.

Submission: The first function is transfer request submission. This is the only function that
adds a new transfer request; the other functions operate on existing requests. The FTR command
uses this function when it is submitting a new request The parameters for the request are
specified through two character strings that contain command line options.

Modification: The second function is transfer request modification. It is used by the FTR
command when the -MODIFY option is specified. The parameters to be changed are specified
through two character strings that contain command line options.

Status Change Operations: The next four functions, which are the cancel, abort, hold, and
release functions, involve the modification of the status of a transfer request. The FTR command
uses these functions when you specify the -CANCEL, -ABORT, -HOLD, or -RELEASE
options.

Status Retrieval Operations: The final two functions obtain the status and parameter
information for a request The FTR command uses these functions when you specify the
-STATUS or -STATUS_ALL options. One function obtains full information for a transfer
request from the user who calls FT$SUB, and the other function obtains partial information for
any transfer request on the system.

Transfer Request Submission
This function performs the initial submission of a transfer request. It is similar to the FTR:
pathname command. To submit a transfer request, use the following calling sequence:

call ft$sub (f$subm,",internal_name,user_cmdl,prog_cmdl,",",
0,addr(request_data), 1 ,addr(error_data), 1 ,code);

The following table consists of arguments that are passed to the FT$SUB subroutine as input
parameters.

Input Argument Meaning
F$SUBM This key specifies that a submission operation is to be

performed.
",",",0 Three null strings and a 0 stand for arguments that are not used

by FT$SUB during a submission operation. You must pass
these arguments exactly as shown, or FT$SUB will return an
error code of E$BPAR.

6-3

Programmer's Guide to Prime Networks

internalname,
usercmdl,
progcmdl

addr(requestdata),!

Set to null on the initial call. Output after submission.
These strings specify the command lines for the user end pro
gram. These command lines provide the details of the
submission operation to FT$SUB.
These arguments point to a request information structure
(addr(request data)) followed by the version number of that
structure (1). Although the pointer itself is an input argument
to FT$SUB, the structure it points to is modified by FT$SUB
to reflect the results of the submission. This structure is
described fully in the section The Request Data Structure,
below.
If you do not want to provide a request data structure, specify
the address and the version number of the structure as null(),0.

Any other combination of settings for these parameters will
result in the error code E$BPAR being returned.
These arguments point to an error information structure
(addr(error data)) followed by the version number of that
structure (1). Although the pointer itself is an input argument
to FT$SUB, the structure it points to is modified by FT$SUB
to provide extra information in case an error occurs during the
submission. This structure is described fully in the section
Error Data Structure.
If you do not want to provide an error data structure, specify
the address and the version number of the structure as null(),0.

Any other combination of settings for these parameters will
result in the error code E$BPAR being returned.

There are two output arguments whose values are modified by FT$SUB for use by the calling
program.

addr(error data),l

Output Argument
internal name

code

Meaning
The internal name of the submitted request. This value is
returned only if the returned error code is 0. You should output
this field to the user after the submission operation, as does the
FTR command.
The error code that represents the success or failure of the
operation. This error code may be either a standard PRIMOS
file system error code or an FTS-specific error code.

Setting Up for Submission: Before calling FT$SUB, initialize usercmdl and progcmdl
either to contain the user and program command lines or to pass constant strings, as appropriate.
The contents of usercmdl are expected to be one or two pathnames followed by a list of options.
Although the intent of usercmdl is to contain a command line with options as specified by a

6-4

FTS Programming

r

user, this is not a requirement. For example, the program may construct usercmdl by allowing
the user to select choices on a menu, with the program adding options for each choice.

prog_cmdl allows the program to provide recommendations for options should the user not
specify them. Typical examples include the specification of -NO_QUERY, the setting of the
-COPY and -NO_COPY switches, and the destination site (-DST_SITE). Whereas usercmdl
contains the source and destination pathnames, progcmdl can contain only options. The options
specified in user_cmdl override corresponding specifications in progcmdl.
For example, suppose user_cmdl and prog_cmdl are set to the following values:

user_cmdl: 'IMPORTANT.MEMO JONES>IN_TRAY>MEM.AKB/001 -SRC_NTFY
-LOG MYLOG'

prog_cmdl: '-DSTN_SITE BIRCH -NO_COPY -NO_QUERY
-LOG USER_REQUESTS>REQUEST.LOG'

This results in a transfer request for the file IMPORTANT.MEMO to be copied into
JONES>IN_TRAY>MEM.AKB/001 on the system named BIRCH (-DSTN_SITE). No
temporary copy of the file is made on the local node (-NO_COPY). The requesting user is
notified of the start and end of the transfer (-SRC_NTFY). A request log file called MYLOG is
also created.
Notice how -LOG MY.LOG in the usercmdl overrides the -LOG
USER_REQUESTS>REQUEST.LOG in progcmdl. The request is submitted with the
-NO_COPY option in effect. This is because the option was present in progcmdl.

Note
You should always include the -NO_QUERY option in progcmdl to
suppress user queries during request submission. The default is to
query the user.

Error Recovery: The following table shows the FTS error codes that can be returned with
submission. See also the section below on Error Codes for a description of general error codes.

Submission Error Codes
F$BDCL Bad command line format
F$BDDN Bad device name
F$BDKW Unknown keyword
F$BDSN Bad site name format
F$CNOP Conflicting option
F$CPLS Copy option applies only to local source file
F$DFAC Destination file type invalid

6-5

Programmer's Guide to Prime Networks

F$DFNS
F$DLLS
F$DRNA
F$DSNC
F$DUIN
F$DUNS

F$DUOP
F$FPTL
F$IDDT
F$IDFT
F$IFDC
F$INMS
F$IPRI
F$ISFT
F$MCLP
F$MBNL
F$NCLS

F$NDLS
F$NTCF
F$PCAM
F$PINS
F$PRAU

F$PSFQ
F$RLST
F$RTIS

F$SDSL
F$SFAC
F$SFNE
F$SFNS
F$SFTD
F$SSNC
F$SUIN

You did not specify the destination file
Delete option applies only to local source file
Device transfer from remote site is not allowed
Destination site is not configured
Destination user name invalid
You did not specify the destination user when you requested the
destination notify

Duplicate option
Full pathname too long
Invalid defer date/time supplied
Invalid destination file type

Illegal file or directory conversion
Invalid message level
Invalid priority supplied
Invalid source file type

Missing command line parameter
Message level specified but you omitted the request log treename
No copy option applies only to local source file
No delete option applies only to local source file
Not configured

CAM files not supported on the remote system

Segment directory transfer to and from a Rev 1 site is not supported
Priority x for administrator use only
Passworded pathname must be fully qualified

Request log treename same as source or target treename
Remote treename incorrectly specified
Source or destination site must be local

Source file type invalid
Source file does not exist
You did not specify the source file

Specified and actual source file types differ
Source site is not configured
Source user name invalid

6-6

FTS Programming

r

F$SUNS
F$TDFN
F$TDNS
F$TFNP
F$UNOP
Q$FULL
Q$QBLK
Q$QNEX
Q$UCTF

You did not specify source user when you requested source notify
Transfer to a device as well as a file is not allowed

Transferring a SEG directory to a device is not supported
Transferring a file to itself is not possible
Unknown option
Queue full
Queue blocked
Queue does not exist
Unable to create temporary file

Example: The following example shows a simple use of FT$SUB for request submission. No
declarations are provided, since they are described above and in the Subroutines Reference Guide,
Volume III.

call tnouaCEnter command line: ',20);
call cl$get(command_line,160,code);
if code~=0 then return;

call ft$sub(f$subm,'',internal_name,command_line,
'-SRC_NTFY -NO_COPY','', " ,0,null() , 0 , null() ,0,
code);

if code/s=0 then return;

call tnoua('Your request is #',17);
call tnou(internal_name,length(internal_name));
re turn;

Transfer Request Modification
This function is used to change one or more parameters of a transfer request. The request must
have already been submitted. This is similar in function to the command FTR -MODIFY name.
To modify a transfer request, use the following calling sequence:

call ft$sub (f$mdfy,request_name,internal_name,user_cmdl,prog_cmdl," ,queue,0,addr(reques t_data), 1 ,addr(error_data), 1 ,code);

6-7

Programmer's Guide to Prime Networks

The table below shows arguments that are passed to the FT$SUB subroutine as input parameters.

Input Argument
F$MDFY

requestname

internal name

usercmdl,
progcmdl
",0

queue

addr(request data),l

addr(error data),l

Meaning
This key specifies that a modification operation is to be per
formed.
This argument contains the internal or external name of the
request to be modified.
This argument contains a null string during the initial call. Dur
ing subsequent calls, this argument contains either a null string
or the internal name of a request from which point in the
queue scanning is to start. See the section entitled Internal vs.
External Names for more information.
These strings specify the options that are to modify the
request.
A null string and a 0 stand for arguments that are not used by
FT$SUB during a modification operation. You must pass these
arguments exactly as shown, or FT$SUB will return an error
codeofE$BPAR.
This string specifies the name of the FTS queue to search for
the request. If all queues are to be searched, pass the null string
in queue.
These arguments point to a request information structure
(addr(request data)) followed by the version number of that
structure (1). Although the pointer itself is an input argument
to FT$SUB, the structure it points to is modified by FT$SUB
to reflect the results of the operation. This structure is
described fully in the section The Request Data Structure,
below.
If you do not want to provide a request data structure, specify
the address and the version number of the structure as null(),0.

Any other combination of settings for these parameters will
result in the error code E$BPAR being returned.
These arguments point to an error information structure
(addr(error data)) followed by the version number of that
structure (1). Although the pointer itself is an input argument
to FT$SUB, the structure it points to is modified by FT$SUB
to provide extra information in case an error occurs during the
operation. This structure is described fully in the section The
Error Data Structure later in this chapter.
If you do not want to provide an error data structure, specify
the address and the version number of the structure as null(),0.

Any other combination of settings for these parameters will
result in the error code E$BPAR being returned.

6-8

FTS Programming

The following are output arguments whose values are modified by FT$SUB for use by the calling
program:

Output Argument Meaning

internal_name The internal name of the modified request. This value is
returned only if the returned error code is 0 or F$TRPR
(Transfer in progress). You should output this field to the user
after the operation, as does the FTR command.

code The error code representing the success or failure of the opera
tion. This error code may be a standard PRIMOS file system
error code, or may be an FTS-specific error code.

Setting Up for Modification: Before you call FT$SUB, initialize usercmdl and progcmdl
to contain the user and program command lines, or pass constant strings, as appropriate. These
strings must contain only options, as the source and destination pathnames cannot be changed.
In addition, most applications will set prog_cmdl to the null string, since background option
specifications are not normally needed during a modify operation. Any options that are specified
in progjcmdl will be overridden by any identical options in usercmdl.

The following options (and their abbreviations) cannot be specified in either usercmdl or
progcmdl, because their corresponding parameters are not changeable.

- C O P Y - N O _ C O P Y
- D S T N _ S I T E - Q U E U E
-DSTN_FILE_TYPE -SRC_FILE_TYPE
- H O L D - S R C _ S I T E

If any of these options are present in usercmdl ox progcmdl during a modify operation, an error
code will be returned.

Error Recovery: If any problems occur during the modification operation, a nonzero value
will be returned in code, and the operation will not take place. Errors fall into one of the
categories listed below. See the section on Error Codes below for a description of general error
codes and the error codes listed in the section entitled The Error Data Structure.

• Illegal calling sequence. The arguments passed to the subroutine by the calling
program are illegal. This can result in the E$BPAR (Bad.PARameter) error code being
returned if incorrect version numbers are supplied for the request or error data
structures, or if other arguments are not supplied as specified in the above description.

• Unrecognized option (error code F$UNOP) or keyword (error code F$BDKW).

6-9

Programmer's Guide to Prime Networks

Unable to modify specified parameters. The modify function cannot be used to change
certain parameters, described above in the list of illegal options. The following error
codes are returned:

C o d e M e a n i n g
F$QNMD Queue name may not be modified.
F$NCMD NO_COPY flag may not be modified.
F$CPMD COPY flag may not be modified.
F$SSMD Source site may not be modified.
F$DSMD Destination site may not be modified.
F$HDMD Hold flag may not be modified.
F$SFMD Source file type may not be modified.
F$DFMD Destination file type may not be modified.

If FT$SUB cannot locate the request with the requestname and internal name fields
that were passed to it by the calling program, it will return an error code of E$EOF
(End of file). Your program should not generate the End of file error message
after receiving the E$EOF error code from FT$SUB. Instead, it should generate a
message such as Request not found. See the section entitled Internal vs. External
Names, below, for more information.

• Insufficient access. If the request belongs to another user, and the user calling
FT$SUB is not logged in as user SYSTEM, FT$SUB returns F$NERF (No Eligible
Request of this name Found)

• Unable to modify the request. Two error codes may be returned if the request is in a
state that prevents it from being modified. If the request is being processed, the error
code F$TRPR (Transfer in progress) will be returned. If the request has been aborted,
the error code F$RQAB (Request already aborting) will be returned.

Example: The following example shows a simple use of FT$SUB for request modification.
No declarations are provided, as they are described above and in the Subroutines Reference
Guide, Volume III.

call tnoua('Enter request name: ',20);
call cl$get(request_name,32,code);
if codeA=0 then return;

call tnouaC Enter command line: ',20);
call cl$get(command_line,160, code) ;
if codeA=0 then return;

internal_name=' ' ;
call ft$sub(f$mdfy,request_name, internal_name, command_line,

" ,' ',", 0, null (),0, null () ,0,code) ;

6-10

FTS Programming

if code/v=0 then return;

call tnoua('The modified request is #',25);
call tnou(internal_name,length(internal_name))
re turn ;

Changing the Status of a Transfer Request
To change the status of a transfer request, use the following calling sequence:

call ft$sub (key ,request_name,internal_name,","," .queue,
user_query,addr(request_data), 1 ,addr(error_data), 1,
code);

The table below shows arguments passed to the FT$SUB subroutine as input parameters.

Input Argument
key

requestname

internal name

n w «
j >

queue

userquery

addr(request_data),l

Meaning
This argument specifies one of four operations to be per
formed on the request: F$CANC to cancel, F$ABRT to abort,
F$HOLD to hold, and F$RLSE to release.
This string contains the internal or external name of the request
to be operated upon.
This argument contains a null string during the initial call. Dur
ing subsequent calls, this argument contains either a null string
or the internal name of a request from which point in the
queue scanning is to start. See the section entitled Internal vs.
External Names for more information.
Three null strings, for arguments that are not used by FT$SUB
during a status change operation. You must pass these argu
ments exactly as shown, or FT$SUB will return an error code
ofF$CLMN.
This string contains the name of the FTS queue to search for
the request. If all queues are to be searched, pass the null string
in queue.
This argument specifies whether the submitting user is to be
queried or not. Currently, the setting of this argument has no
effect.
These arguments point to a request information structure
(addr(requestdata)) followed by the version number of that
structure (1). Although the pointer itself is an input argument
to FT$SUB, the structure it points to is modified by FT$SUB
to reflect the results of the operation. This structure is
described fully in the section The Request Data Structure,
below.

6-11

Programmer's Guide to Prime Networks

addr (error data),l

If you do not want to provide a request data structure, specify
the address and the version number of the structure as null(),0.

Any other combination of settings for these parameters will
result in the error code E$BPAR being returned.
These arguments point to an error information structure
(addr(error data)) followed by the version number of that
structure (1). Although the pointer itself is an input argument
to FT$SUB, the structure it points to is modified by FT$SUB
to provide extra information in case an error occurs during the
operation. This structure is described fully in the section The
Error Data Structure.
If you do not want to provide an error data structure, specify
the address and the version number of the structure as null(),0.

Any other combination of settings for these parameters will
result in the error code E$BPAR being returned.

The following arguments have values that are modified by FT$SUB for use by the calling
program.

Output Argument
internal name

code

Meaning
The internal name of the affected request. This value is
returned only if the returned error code is 0 or one of several
possible error codes described below. You should output this
field to the user after the operation, as does the FTR command.
The error code representing the success or failure of the opera
tion. This error code may be either a standard PRIMOS file
system error code or an FTS-specific error code.

Error Recovery: If any problems occur during the operation, a nonzero value will be returned
in code, and the operation will not take place. These errors fall into one of the categories listed
below. Also see the section Error Codes below for a description of general error codes.

• Illegal calling sequence. The arguments passed to the subroutine by the calling
program are illegal. This can result in the E$BPAR (Bad Parameter) error code being
returned either if incorrect version numbers are supplied for the request or error data
structures, or if other arguments are not supplied as specified in the above description.

• Command lines not null. If your program does not pass null strings as the fourth and
fifth arguments to FT$SUB, the error code F$CLMN (Command Lines Must be Null)
will be returned.

• Unable to find specified request in database. If FT$SUB cannot locate the request with
the requestname and internalname fields that were passed to it by the calling
program, it will return an error code of E$EOF (End of file). Your program should not
generate the End of file error message after receiving the E$EOF error code from
FT$SUB. Instead, a message such as Request not found should be generated. See
Internal vs. External Names, below, for more information.

6-12

FTS Programming

r

• Insufficient access. If the request belongs to another user, and the user calling FT$SUB
is not logged in as user SYSTEM, FT$SUB returns F$NERF (No Eligible Request of
this name Found).

• Unable to change the status of the request. Several error codes may be returned if the
request is in a state that prevents its status from being changed. These error codes are

C o d e M e a n i n g
F$TRPR Transfer in progress
F$RQHU Request already put on hold by user
F$RQHO Request already put on hold by operator
F$RQHF Request already put on hold by FTS
F$RQAB Request already aborted
F$RQWT Request waiting
F$RHPR Request held by operator

The first five codes are self-explanatory. The sixth code, F$RQWT, is produced when an attempt
is made to release a request that has not been placed on hold. The last code, F$RHPR, is produced
when an attempt is made by a user not logged in as SYSTEM to release a request placed on hold
by an operator (user SYSTEM).

Example: The following example shows a simple use of FT$SUB for changing the status of a
request. No declarations are provided, since they are described above or in the Subroutines
Reference Guide, Volume III.

call tnouaCEnter request name: ',20);
call cl$get(request_name,32,code);
if codeA=0 then return;

call tnou('Choose one of the following options:',36);
call tnouC ' ,0) ;

. Cancel the request',24);

. Abort the request',23) ;

. Hold the request',22);

. Release the request',25);

. Exit this program',23) ;
call tnouC ' ,0) ;
call tnoua('Enter your choice: ',19);
call cl$get(command_line,160,code) ;
if codeA=0 then return;

c a l l tnou('
c a l l tnou ('
c a l l tnou ('
c a l l tnouC
c a l l tnou ('

6-13

Programmer's Guide to Prime Networks

if command_line='1'
else if command_line='2'
else if command_line='3'
else if command_line='4'
else if command_line='5'
else do;

call tnou('I l legal response.',17)
code=e$ivcm; /* Invalid command.
re tu rn-
end;

then key=f$canc;
then key=f$abrt;
then key=f$hold;
then key=f$rlse;
then return;

* /

internal_name=' ' ;
call ft$sub(key,request_name,internal_name,

n u l l () , 0 , n u l l () , 0 , c o d e) ;
if code^=0 then return;

' ' 0

call tnoua('The affected request is #',25);
call tnou(internal_name,length(internal_name));
re turn ;

Status Retrieval of a Transfer Request
To retrieve the status of a particular transfer request, use the following calling sequence:

call ft$sub (key,request_name,intemal_name,",",",queue,0,
addr(request_data), 1 ,addr(error_data), 1 ,code);

The information on the request will be returned in the requestdata structure, described below.
The arguments below are passed to the FT$SUB subroutine as input parameters.

Input Argument
key

requestname

internal name

Meaning
This argument specifies one of two forms of status retrieval:
F$STAT to retrieve complete status and parameter information
on a transfer request that belongs to the user calling FT$SUB;
and F$STAL to retrieve partial status and parameter informa
tion on any transfer request on the system.
This string contains the internal or external name of the target
request.
This argument contains a null string during the initial call. Dur
ing subsequent calls, this argument contains either a null string
or the internal name of a request from which point in the
queue scanning is to start. See the section entitled Internal
vs. External Names, below, for more information.

6-14

FTS Programming

queue

addr(requestdata),!

r

",",",0 Three null strings and a 0 stand for arguments that are not used
by FT$SUB during a status retrieval operation. You must pass
these arguments exactly as shown, or FT$SUB will return an
error code of F$CLMN.
This string contains the name of the FTS queue to search for
the request. If all queues are to be searched, pass the null string
in queue.
These arguments point to a request information structure
(addr(requestdata)) followed by the version number of that
structure (7). Although the pointer itself is an input argument
to FT$SUB, the structure it points to is modified by FT$SUB
to return the status information of the request. This structure is
described fully in the section The Request Data Structure,
below.

Any other combination of settings for these parameters will
result in the error code E$BPAR being returned.
These arguments point to an error information structure
(addr(error data)) followed by the version number of that
structure (7). Although the pointer itself is an input argument
to FT$SUB, the structure it points to is modified by FT$SUB
to provide extra information in case an error occurs during the
operation. This structure is described fully in the section The
Error Data Structure, below.
If you do not want to provide an error data structure, specify
the address and the version number of the structure as null(),0.
Any other combination of settings for these parameters will
result in the error code E$BPAR being returned.

FT$SUB modifies the values of the arguments below for use by the calling program.

addr (error data),l

Output Argument
internal name

code

Meaning
The internal name of the target request. This value is returned
only if the returned error code is 0. If your program is retriev
ing status information for display purposes, you should output
this field to the user along with other status and parameter
information, as does the FTR command.
The error code representing the success or failure of the opera
tion. This error code may be either a standard PRIMOS file
system error code or an FTS-specific error code.

Error Recovery: If any problems occur during the status retrieval operation, a nonzero value
will be returned in code, and the operation will not take place. These errors fall into one of several
categories listed below. Also see Error Codes below for a description of general error codes.

6-15

Programmer's Guide to Prime Networks

• Illegal calling sequence. The arguments passed to the subroutine by the calling
program are illegal. This can result in the E$BPAR (Bad Parameter) error code being
returned either if incorrect version numbers are supplied for the request or error data
structures, or if other arguments are not supplied as specified in the above description.

•

•

Command lines not null. If your program does not pass null strings as the fourth and
fifth arguments to FT$SUB, the error code F$CLMN (Command Lines Must be Null)
is returned.
Unable to find specified request in database. If FT$SUB cannot locate the request with
the request name and internal name fields passed to it by the calling program, it
returns an error code of E$EOF (End of file). Your program should not generate the
End of file error message after receiving the E$EOF error code from FT$SUB.
Instead, it should generate a message such as Request not found. See Internal
vs. External Names, below, for more information.

• Insufficient access. If the request belongs to another user, and the user calling FT$SUB
is not logged in as user SYSTEM, the error code F$NERF (No eligible request of this
name found) is returned. This error code is returned only if key is F$STAT.

Example: The following example shows a simple use of FT$SUB for retrieving the status of a
request. No declarations are provided, as they are described above or in the Subroutines Reference
Guide, Volume III.

call tnouaC Enter request name: ',20);
call cl$get(request_name,32,code) ;
if codeA=0 then return;

i n t e r n a l _ n a m e = ' ' ;
c a l l f t $ s u b (f $ s t a t , r e q u e s t _ n a m e , i n t e r n a l _ n a m e , ' ' , ' ' , ' ' , ' ' , 0 ,

a d d r (r e q u e s t _ d a t a) , 1 - n u l l () , 0 , c o d e) ;
if codeA=0 then return;

call tnoua('The request is #',25);
ca l l t nou (i n te rna l_name, leng th (i n te rna l_name)) ;

cal l tnoua('Last at tempt was ' I | request . last_date| I ' a t ' ,29) ;
c a l l t o v f d $ (d i v i d e (r e q u e s t . l a s t _ t i m e , 6 0 , 1 5)) ;
cal l tnoua (' : ' ,1) ;
i f mod(request . last_t ime,60)<10 then cal l tnoua('0 ' ,1) ;
cal l tovfd$(mod(request . last_t ime, 60)) ;
call tnoua(', ' ,2) ;
i f request.ntry=l then cal l tnou('one connect ion attempt. ' ,23);

else do; A/* i f request.ntryA=l */
cal l tovfd$(request.ntry) ;
call tnouC connection attempts.', 21) ;
end; /* if request.ntry*=l */

r e t u r n ;
6-16

FTS Programming

r

Internal vs. External Names
For operations other than request submission, the FT$SUB subroutine is designed to allow one
operation on one file transfer request per invocatioa In some cases, you may want a calling
program to perform operations over a set of transfer requests. Quite often, this set of requests
constitutes one of the following:

• All of the requests in the system
• All of the requests that belong to the calling user
• All of the requests that have a certain external name that belong to the calling user

In each of these cases, FT$SUB provides a simple way of calling programs to invoke it for all of
the transfer requests in the set. You do this by providing certain information to the calling
program upon the completion of an FT$SUB function that can then be recycled by the program
into another call to FT$SUB.
In addition, the calling program may further limit the set to only those requests in a specific FTS
queue, by providing a non-null queue argument.

Calling Sequence Support for Iteration: In each of the calling sequences described for
FT$SUB, except for the submission calling sequence, there are two arguments: request_name and
internal name. These are the second and third arguments of the FT$SUB calling sequence.
A request can reference either the name of the file being transferred, which is the requestname,
or the number of the request, which is provided by FTS. The request number is the internal name
of a request.
The requestname argument is an input-only argument. The calling program must fill this field
with an identifier of the transfer request it is referencing. It can do this in one of three ways:

• By specifying the internal name of the transfer request. This limits the search by
FT$SUB to a single request

• By specifying the external name of the transfer request. This limits the search by
FT$SUB to requests with that external name.

• By specifying the null string. This places no limits on the search by FT$SUB.

The internalname argument is an input/output argument. It determines the search procedure for
the transfer request specified in requestname. Before calling FT$SUB, the calling program sets
internal name to one of the following two character strings:

• The null string. In this case, FT$SUB will begin searching its database from the
beginning of the queue. Before the initial call to FT$SUB, internal name must be the
null string.

• The internal name of a transfer request. This is used only after an initial call to
FT$SUB has taken place. This will cause FT$SUB to search its database starting from
the returned internalname from the previous call.

6-17

Programmer's Guide to Prime Networks

As an output argument, internalname contains the internal name of the first transfer request
meeting the requirements imposed by request_name, internal name, and queue. However, if
FT$SUB was unable to find such a request, the error code E$EOF will be returned in code, and
the contents of internalname will be null.
Therefore, the calling program can iteratively call FT$SUB over a set of file transfer requests,
optionally limiting the set to include only requests with a specified external name. It does this by

• Using the external name or the null string for requestname.
• Setting internalname to the null string for the first call to FT$SUB, and using the

returned internalname argument on subsequent calls, until no more transfer requests
are found.

The following table provides an example of how this procedure might work in a typical
environment. Each line of the table shows the values of code, internalname, and requestname
before a call to FT$SUB. An imaginary call to FT$SUB occurs between each line. Indeterminate
or unimportant values are indicated by —.

Code Internal Name Request Name
— »» 'MEMO_l'
0 '12' 'MEMO_l'
0 '16' 'MEMO_l'
E$EOF »»

In this example, two requests with the external name MEMO_l were returned to the calling
program. The first request had the internal name 12, and the second request had 16.
There are two further limitations that can be imposed on the set of transfer requests returned by
FT$SUB. First, the requests can be limited to only those that belong to the calling user. This is
normally the case. However, the restriction is lifted either if the key parameter in the FT$SUB call
is set to F$STAL or if the calling user is SYSTEM. Second, you can limit the set to only those
requests in a certain FTS queue, by specifying a non-null queue argument.

Operating on All Requests on the System: To operate on all requests on the system by
using the F$STAL key, the calling program follows this basic form:

/* Initialize the request_data.valid bit to start up the do-loop,
the found_request bit to indicate that no requests have been
found, and initialize the internal name to null. */

request_data .va l id= ' l 'b ;
found_request='O'b;
internal_name=' ';

/* Loop over the set of all FTS requests on the system. */

6-18

FTS Programming

r

do whi le(request_data.val id) ; / * Whi le there are requests. * /
call ft$sub(f$stal, ' ' , internal_name, ",",",", 0,

a d d r (r e q u e s t _ d a t a) , 1 , n u l l () , 0 , c o d e) ;
if code=0

t h e n d o ; / * I f s u c c e s s , d i s p l a y t h e d a t a . * /
ca l l d i sp lay_reques t_da ta (reques t_da ta) ;
found_request='l'b; /* Remember we found a request. */
e n d ; / * i f c o d e = 0 * /

e n d ; / * d o w h i l e (r e q u e s t _ d a t a . v a l i d) * /

if (code=e$eof & Afound_request)
then call tnou('No requests in system.',22);

else if code=0
then call tnou('Program error, code=0.',22);
else call fts_error(code); /* Display error message. */

Notice that the second argument, requestname, is a null string. This lifts the restriction that the
returned requests all have a particular external name. When FT$SUB returns a request, the calling
program can determine the external name of the request by examining request_data.extnam, as
described below.
Notice also that the program flow ignores errors returned from FT$SUB as long as FT$SUB
manages to return a valid requestjdata structure (as indicated by request data.valid being set to
To). The program is simply outputting the status of all the requests on the system and is willing
to ignore error conditions that do not interrupt its scan for requests. (See the sections entitled
Error Codes and The Request Data Structure for more information about the returned error code
and its relationship to the requestdata structure.)

Operating on All Requests for the Calling User: To perform an operation on all requests
that belong to the user calling FT$SUB, and using the F$ABRT key, for example, the calling
program should have the following form:

/* Initialize the request_data.valid bit to start up the do-loop,
the found_request bit to indicate that no requests have been
found, and initialize the internal name to null. */

r e q u e s t _ d a t a . v a l i d = ' l ' b ;
f ound_ reques t= ' 0 ' b ;
i n t e r n a l _ n a m e = ' ' ;

/ * Loop over the set of a l l FTS requests for th is user. * /

d o w h i l e (r e q u e s t _ d a t a . v a l i d) ; / * W h i l e t h e r e a r e r e q u e s t s . * /
cal l f t$sub(f$abrt , ' ' , internal_name, " ," ," ," , 0,

add r (reques t_da ta) , 1 ,nu l l 0 ,0 , code) ;

6-19

Programmer's Guide to Prime Networks

if code=0
t h e n d o ; / * I f s u c c e s s , d i s p l a y a m e s s a g e . * /

ca l l d i sp lay_abor t_message(reques tda ta) ;
found_request='l'b; /* -Remember we found a request. */
e n d ; / * i f c o d e = 0 * /

else if code~=e$eof
then do; /* Error, print the error code. */

call fts_error(code); /* Do error message. */
if request_data .valid /* If the request data is

p resen t , * /
then ca l l d isp lay_request_ in fo (reques t_data) ;
/* Display summary information on request. */

end; /* if code*=e$eof */
e n d ; / * i f c o d e * = 0 * /

e n d ; / * d o w h i l e (r e q u e s t d a t a . v a l i d) * /

if (code=e$eof & "found^equest)
then call tnou('No requests found.',18);

else if code=0
then call tnou('Program error, code=0.',22);

Notice that the second argument, internalname, is a null string. This lifts the restriction that the
returned requests all have a particular external name. When FT$SUB returns a request, the calling
program can determine the external name of the request by examining request data.extnam, as
described below.
Also notice how the error code returned from FT$SUB is handled. Information about the error
code is always printed, but more descriptive information about the invalid request is displayed
only if the request information is present. In addition, the main do-loop continues as long as a
valid request was found, even if the abort operation itself failed. This way, the entire FTS
database is scanned.
See the sections entitled Error Codes and The Request Data Structure for more information about
the returned error code and its relationship to the requestdata structure.

Operating on All Requests With a Specific External Name: You can perform an
operation on all requests with a particular external name that belong to the user calling FT$SUB.
If you use the F$HOLD key, for example, the calling program should have the following form:

/* Initialize the request_data.valid bit to start up the do-loop,
the found_request bit to indicate that no requests have been
found, and initialize the internal name to null. */

r e q u e s t _ d a t a . v a l i d = ' l ' b ;
f ound_ reques t - 'O ' b ;
i n t e r n a l _ n a m e = ' ' ;
request name='MEMO TO_MARK';

6-20

FTS Programming

/* Loop over the set of all FTS requests for this user.

r

do while(request_data.valid); /* While there are requests. */
ca l l f t $sub (f$ho ld , r eques t_name , i n te rna l_name , ' ' , ' ' , ' ' , ' ' , ' l ' b ,

addr (request_data) , l ,nu l l () ,0 ,code) ;
if code=0

t h e n d o ; / * I f s u c c e s s , d i s p l a y a m e s s a g e . * /
call display_hold_message(request_data);
found_request='l'b; /* Remember we found a request. */
e n d ; / * i f c o d e = 0 * /

else if codeA=e$eof
then do; /* Error, print the error code. */

call fts_error(code) ; /* Do error message. */
if request_data.valid /* If the request data is

p resen t , * /
then call display_request_info(request_data);
/* Display summary information on request. */

end; /* if code*=e$eof */
e n d ; / * i f c o d e * = 0 * /

e n d ; / * d o w h i l e (r e q u e s t _ d a t a . v a l i d) * /

if (code=e$eof & ^found_request)
then call tnou('No requests found.',18);

else if code=0
then call tnou('Program error, code=0.',22);

The second argument, requestname, contains the external name specified by the user. This
imposes the restriction that the returned requests all have the external name requestname.
Also notice how the error code returned from FT$SUB is handled. Information about the error
code is always printed, but more descriptive information about the invalid request is displayed
only if the requested information is present. In addition, the main do-loop continues as long as a
valid request was found, even if the hold operation itself failed. Thus, the entire FTS database is
scanned.
See the sections entitled Error Codes and The Request Data Structure for more information about
the returned error code and its relationship to the requestdata structure.

Error Codes
After a call to FT$SUB, the status of the call is returned in code. If the returned value is nonzero,
the requested operation was not performed. However, some of the side effects of the call may
have been performed, depending on the actual value set in code. For example, suppose a call is
made to put a transfer request on hold, and the specified request is already on hold. The returned
internalname argument and the requestdata structures will contain the appropriate data for the
specified transfer request, even though the status of the request is not changed. This allows the
calling program to determine the present status of the specified request, and to continue scanning

6-21

Programmer's Guide to Prime Networks

for other requests. In all cases, a nonzero error code is accompanied by valid information in
error_data. See the section entitled The Error Data Structure for more information.
The list below contains error codes that may be returned by FT$SUB during normal operation.
Other error codes may be returned, but these usually indicate an unusual circumstance, such as a
disk error, or insufficient disk storage to submit a request. Error codes marked with * indicate
operations that failed but still return valid internal name and request_data values.

Code

E$BKEY
E$EOF
E$BPAR
F$ARTL
F$ARTS
F$INEX
F$NERF
F$NRFD
F$OMOP
F$TRPR*

F$RQHU*
F$RQHO*

F$RQHF*
F$RQAB*
FSRQWT*
F$RHPR*

F$QNMD
F$NCMD
F$CPMD
F$SSMD
F$DSMD
F$HDMD
F$SFMD
F$DFMD
F$CLMN
F$NWNA

Q$NVDB
Q$QNRD

Meaning
Bad key in call
End-of-file
Bad parameter

Argument too long
Argument too short
Invalid external name

No eligible request of this name found
No request of this name found

Only one management option allowed
Transfer in progress

Request already put on hold by user
Request already put on hold by operator
Request already put on hold by FTS
Request already aborted
Request waiting
Request held by operator
Queue name may not be modified
NO_COPY flag may not be modified
COPY flag may not be modified
Source site may not be modified
Destination site may not be modified
HOLD flag may not be modified
Source file type may not be modified
Destination file type may not be modified
Command lines must be null
Networks unavailable
The FTS database is invalid
FTS not ready to use

6-22

FTS Programming

The Request Data Structure
When the request data structure is provided during a call to FT$SUB, the request data structure is
filled in by FT$SUB to indicate the status and parameters of the specified request. However, it is
filled in only if the returned error code is nonzero or one of the values listed in the section above.
To simplify the process of determining the validity of requestdata, a valid bit is provided in the
substructure requestdata flags. If this bit is 'l'b, the entire request data structure contains valid
information. Otherwise, the contents of requestdata are not valid.
However, if the request data structure was returned from FT$SUB as a result of a call using the
F$STAL key (Status of all requests), certain fields in requestdata are set to null or zero values
by FT$SUB before returning to the caller to prevent the FT$SUB caller getting access to other
user's confidential informatioa These fields are

log_file
site(source_ptr)
site(destination_ptr)
user_pswd(source_ptr)
user_pswd(destination_ptr)
tree(source_ptr)
tree(destination_ptr)
file_pswd(source_ptr)
file_pswd(destinationjptr)
account_pswd(source_ptr)
account_pswd(destination_ptr)
device

The source_ptr and destination_ptr indexes are constant expressions that you might find useful in
your program. They are used to access one of the two elements in several different arrays in
request_data in a mnemonic fashion. Use the following statement in your PL1G program to set
up source_ptr and destination_ptr correctly.

%replace source_ptrby 1,
destination_ptr by 2;

The request data structure and its corresponding version number allow future changes to the
structure contents, while supporting programs that call FT$SUB by using an earlier version of the
structure. This structure has the following declaration, known as version 1.

d e l 1 r e q u e s t _ d a t a b a s e d , / * B e g i n n i n g o f i t e m e n t r y . * /
2 i n u m b e r b i n , / * I n t e r n a l u s e o n l y . * /
2 i o r i g b i n , / * I n t e r n a l u s e o n l y . * /
2 i s t a t u s b i n , / * S t a t u s o f i t e m , s e e b e l o w . * /
2 r e s e r v e d b i n (3 1) , / * R e s e r v e d . * /
2 u s e r i d c h a r (3 2) v a r , / * [/ s e r n a m e . * /
2 f r n o d e c h a r (3 2) v a r, / * R e s e r v e d . * /
2 extnam char(32) var, /* External name for this request. */
2 tempfile char(32) var, /* Temporary file and internal name

for this request. */

6-23

Programmer's Guide to Prime Networks

* /

/* Date this request queued (YYYYMMDD). */
/* Time this request queued (seconds after

midnight) . */
/* Internal use only.
/* Version number of request block (1)

2 block_type bin, /* Type of request block.
0 = transfer request block
/* General flag halfword.
/* True, 'l 'b, if request block

contains valid info, otherwise
set to false, 'O'b.

/* Pad flags to one halfword.
/* Date of last connect (YYYYMMDD).

V a l i d o n l y i f n t r y > 0 . * /
/* Time of last connect (minutes).

V a l i d o n l y i f n t r y > 0 . * /
/* Number of connection attempts.
/* Transfer action code, see below.
/* Relative priority within queue
/* File size (bytes).
/* Time before which the request will

not be processed.

idate char(8),
i t ime b in(31) ,

ne tc t l b in ,
version bin,

fl a g s ,
3 valid bit(1),

3 mbz bit(15),
2 last_date char(8),

2 last_time bin(31),

2 ntry bin,
2 action bin,
2 priority bin,
2 fi le_size b in(31) ,
2 defer,

3 time bin,
3 date char(8),

2 runby,
3 time bin,
3 date char(8) ,

2 runevery bin(31),
2 pad bit(5),
2 append bit(1),
2 fi l e _ e x i s t b i t (2) ,
2 fi le_ type b i t (1) ,
2 copy bit(1),
2 delete bit(1),

/* Reserved. */

2 defer_set bit(l]
2 runby_set bi t(l) ,

/* Reserved. */
/* Pad up to 16 bits.
/ * R e s e r v e d . * /
/* Required existence of output file
/* Binary = 'l'b, text = 'O'b.
/* Make copy of file = 'l'b.
/* Delete local source file after
/* transfer = ' l 'b. */
/* Reserved. */
/* Reserved. */

2 runevery_set bit(l), /* Reserved. */
2 notify(2) bit(l), /* Source/dest user notify on =
2 log_file char(128) var, /* User requested log file

Null i f no file specified.
2 msg_level bin, /* Message level for logging (1-4) .
2 site (2) char(128) var, /* Source/dest site addresses.
2 site_type(2) bin, /* Site is Prime = 1, Other = 0
2 stream char(32) var, /* Name of request queue.
2 user(2) char(32) var, /* Source/dest users.
2 user_pswd(2) char(32) var, /* Reserved. */

l ' b ,
* /

* /

* /

* /

* /
* /
* /
* /

V

* /

V
* /

V
V
V

6-24

FTS Programming

2 t r e e (2) c h a r (1 2 8) v a r, / * S o u r c e / d e s t fi l e n a m e s . * /
2 file_pswd(2) char(32) var, /* Source/dest file passwords.*/
2 k inship(2) char(32) var, / * Source/dest fi le types.

SAM, DAM, SEGS AM, SEGDAM. */
2 m o d e (2) b i n , / * R e s e r v e d . * /
2 a c c o u n t (2) c h a r (3 2) v a r, / * R e s e r v e d . * /
2 account_pswd(2) char(32) var, /* Reserved. */
2 dev ice char(32) var, / * Dest inat ion dev ice, or nu l l . * /
2 t i d b i n , / * R e s e r v e d . * /
2 response_queue char(32) var, /* Reserved. */
2 option char(255) var; /* Reserved. */

%replace request_size by 825; /* Requestdata size in halfwords */

Status of Item: The value of istatus is set according to the following table.

/* Request status values, - permitted values of request.istatus. */

%replace wait_rqstatus by 1; /* Waiting. */
%replace busy_rqstatus by 2; /* In progress (transferring). */
%replace user_hold_rqstatus by 3; /* Held by user. */
%replace operator_hold_rqstatus by 4; /* Held by FTS operator

(user SYSTEM). */
%replace user_abort_rqstatus by 5; /* Aborted by user. */
%replace fts_hold_rqstatus by 6; /* Held by FTS server. */
%replace operator_abort_rqstatus by 7; /* Aborted by FTS operator

(user SYSTEM). */

File Transfer Action Code: The value of action is set according to the following table.

/* Definition of the possible values for request.action */

%replace null_action by 0; /* Initial value. */
%replace take_file_action by 1; /* File is being sent. */
%replace give_file_action by 2; /* File is being fetched. */
%replace take_jobin_action by 3; /* Not used. */
%replace give_jobin_action by 4; /* JVot used. */
%replace take_jobout_action by 5; /* File is being sent to a

dev ice. * /
%replace give_jobout_action by 6; /* Not used. */

The Error Data Structure
If a call to FT$SUB results in code being set to a nonzero value, you can examine the error data
structure, if it is passed to FT$SUB, to pinpoint the incorrect input. This is useful if the error code
indicates an error in one of the two command lines passed to FT$SUB, usercmdl and progjomdl.
Therefore, this structure is useful only when FT$SUB is being used either to submit or to modify
file transfer requests.

6-25

Programmer's Guide to Prime Networks

The following table shows error codes that indicate an error in usercmdl or progcmdl.

C o d e M e a n i n g
F$ARTL Argument too long
F$ARTS Argument too short
F$BDCL Bad command line format
F$BDDN Bad device name
F$BDKW Unknown keyword
F$BDSN Bad site name format
F$CNOP Conflicting option
F$CPLS Copy option only applies to local source file
F$CPMD COPY flag may not be modified
F$DFAC Destination file type invalid
F$DFMD Destination file may not be modified
F$DFNS You did not specify the destination file
F$DLLS Delete option only applies to local source file
F$DRNA Device transfer from remote site not allowed
F$DSMD You may not modify the destination site
F$DSNC Destination site is not configured
F$DUEN Destination user name invalid
F$DUNS You did not specify destination user when you requested destination

notify
F$DUOP Duplicate option
F$FPTL Full pathname too long
F$HDMD HOLD flag may not be modified
F$IDDT Invalid defer date/time supplied
F$IDFT Invalid destination file type
F$IFDC Illegal file or directory conversion
F$INMS Invalid message level
F$IPRI Invalid priority supplied
F$ISFT Invalid source file type
F$MCLP Missing command line parameter
F$MBNL Message level specified but request log treename omitted
F$NCLS NO_COPY option only applies to local source file

6-26

FTS Programming

r

F$NCMD
F$NDLS
F$NTCF
F$OMOP
F$PCAM
F$PINS
F$PRAU

F$PSFQ
F$RTIS

F$QNMD
F$RLST
F$SDSL
F$SFAC
F$SFMD
F$SFNE
F$SFNS
F$SFTD
F$SSMD
F$SSNC
F$SUIN
F$SUNS
F$TDFN
F$TDNS
F$TFNP
F$UNOP

NO_COPY flag may not be modified
No delete option applies only to local source file
Not configured

Only one management option allowed
CAM files not supported on the remote system

Segment dir. transfer to or from a Rev 1 site is not supported
Priority x for administrator use only
Passworded pathname must be fully qualified
Remote treename incorrectly specified

Queue name may not be modified
Request log treename same as source or target treename
Source or destination site must be local
Source file type invalid
Source file type may not be modified
Source file does not exist
Source file has not been specified

Specified and actual source file types differ
Source site may not be modified

Source site is not configured
Source user name invalid
Source user not specified when source notify requested
Transfer to a device as well as a file is not allowed

Transferring a SEG directory to a DEVICE is not supported
Transferring a file to itself is not possible
Unknown option

However, to simplify programming, the error data structure itself has a bit that indicates the
validity of its data. This is the valid bit. It is set to 0 by FT$SUB whenever FT$SUB is unable to
fill the rest of the structure with valid data. Otherwise, valid is set to 1, and the rest of the
structure contains valid data.
Before calling FT$SUB, you should initialize start_ptr and end_ptr to 0. FT$SUB adds the
starting and ending locations in the command line of the invalid option or keyword. After
FT$SUB returns a nonzero error code, if commjine in the error data structure is nonzero, you
should display the specified command line to the user, and use the start_ptr and end_ptr values to
indicate which part of the command line was in error. If these values were initialized to 0, then
they will contain values between 1 and the length of the invalid command line, inclusive.

6-27

Programmer's Guide to Prime Networks

The error data structure and its corresponding version number are designed to allow future
changes to the structure contents, while supporting programs that call FT$SUB by using an earlier
version of the structure. This structure has the following declaration, known as version 1.

del 1 error_databased,
2 valid bit(l), /* 'l'b if structure info valid, else 'O'b. */
2 mbz bit(15), /* Bit padding. */
2 version bin, /* Version number of buffer, must be 1. */
2 er rcode b in , / * Copy of FT$SUB return code. * /
2 comm_line bin, /* 1 = Display program command line with ptrs.

2 = Display user command line with ptrs.
0 = Don't display any command line. */

2 start_ptr bin, /* If commline A= 0, points to start of
area on command line causing the error. */

2 end_ptr bin, /* If commline A= 0, points to end of
area on command line causing the error.
FT$SUB adds to the value supplied to
it in start_ptr and end_ptr. */

2 text char(160) var, /* Optional explanatory text. * /
2 proc char(32) var; /* Name of procedure detecting

t h e e r r o r . * /

%replace error_size by 104; /* Size of errordata in
16-bit halfwords. */

You can use the text and proc strings during a call to the system error printing subroutine
ERRPR$. They provide additional visual feedback on the error, even if the problem was not in
one of the command lines.

Example
Here is a sample program using FT$SUB.

C ft$sub_test.f77. Submit a local file to FTS.
C
C This program reads the source filename, destination filename, and
C destination site from the user terminal, and then submits this
C request by calling FT$SUB.
C

PROGRAM main
C
$INSERT SYSCOM>FT$SUB.INS.FTN
C

INTEGER*2 empty_string(17), /* for char*32 var
+ e m p t y _ s t r i n g l (1 2 9) , / * f o r c h a r * 2 5 5 v a r
+ o p t i o n s (2 1) / * f o r c h a r * 4 0 v a r

6-28

FTS Programming

r

INTEGER*2 int_name(17), int_length /* for char*32 var
CHARACTER*32 int_string
EQUIVALENCE (in t_ length, in t_name(1)) , (in t_st r ing, in t_name(2))

C
INTEGER*2 cmd_line(41), cmd_length /* for char*80 var
CHARACTER*80 cmd_string
EQUIVALENCE (cmd_length,cmd_line(1)), (cmd_string,cmd_line (2))

C
C Define request block storage.
C

INTEGER*2 request_block(900)
C
C Define error block storage and structure.
C

INTEGER*2 error_data(104), / * Total s ize
+ e _ v a l i d ,
+ e _ t e x t _ l e n ,
+ e _ p r o c _ l e n

CHARACTERS60 e_text
CHARACTER*32 e_proc
EQUIVALENCE (e_valid, error_data(1)),

+ (e_ tex t_ len , e r ro r_da ta (7)) ,
+ (e_ tex t , e r ro r_da ta (8)) ,
+ (e _ p r o c _ l e n , e r r o r _ d a t a (8 8)) ,
+ (e _ p r o c , e r r o r _ d a t a (8 9))

C
INTEGER*2 return_code

C
COMMON /ALAN/empty_string,

+ e m p t y _ s t r i n g l ,
+ o p t i o n s ,
+ i n t _ n a m e ,
+ c m d _ l i n e ,
+ r e q u e s t _ b l o c k ,
+ e r r o r _ d a t a

C
C Initialize several FT$SUB parameter strings.
C

CALL in i t_str (empty_str ing, empty_str ingl , in t_name, opt ions)
C
C Now get the user command line
C

CALL get_line(cmd_string, cmd_length)
C
C Dispatch the request!
C

6-29

Programmer's Guide to Prime Networks

CALL FT$SUB(F$SUBM,
+ e m p t y _ s t r i n g ,
+ i n t _ n a m e ,
+ c m d _ l i n e ,
+ o p t i o n s ,
+ e m p t y _ s t r i n g l ,
+ e m p t y _ s t r i n g ,
+ F $ N Q R Y ,
-I- LOC (request_block) , 1,
+ LOC(e r ro r_da ta) , 1 ,
+ r e t u r n _ c o d e)

C
C If the submission was OK, type out the internal name, otherwise
C dump error message.
C

CALL TNOUA('Submitted as ', INTS(13))
CALL TNOU(int_string, int_length)

C
CALL TNOUA('Submission error code: ', INTS(23))
CALL TODEC(return_code)
CALL TONL
IF (AND(e_valid,:100000) .NE. 0) THEN

CALL TNOUA(e_text, e_text_len)
CALL TNOUA(' (', INTS(2))
CALL TNOUA(e_proc, e_proc_len)
CALL TNOUC) ', INTS(l))

ENDIF
C

CALL EXIT
END

C GET_LINE
C

SUBROUTINE get_line(string, length)
C

CHARACTER*80 string
INTEGER*2 length

C
C Get the source file, the destination file, and the destination site
C

PRINT 9000
READ (1,'(A80)') string
length =80

C
9000 FORMAT ('Give srcfile, destfile, -ds destsite')

RETURN
END

C INIT STR

6-30

FTS Programming

r

c
C This routine initializes several FT$SUB parameter strings
C

SUBROUTINE init_str(e, el, int, o)

INTEGER*2 e(l) , e l (l) , int(l) , o(l)
I N T E G E R * 2 d e f o p t (2 0) / * M a x 4 0 c h a r s

DATA defopt/'-log demo.log

e (l) = 0 / * S e t n u l l l e n g t h
el(l) = 0
int(l) = 0

o (l) = 1 3 / * A c t u a l l y u s e d
DO 10 i = 1, 20

10 o(i + 1) = defopt(i)
C

RETURN
END;

6-31

Appendices

X.25 Programming Guidelines

This appendix discusses

• PRIMENET's X.25 support
• Optional X.25 fields and the IPCF parameters that control them
• X.24 protocol restrictions
• The Protocol ID and User Data fields
• X.25 facilities
• Called address extension
• Window and packet size negotiation

PRIMENET's X.25 Support
With the release of Rev. 21.0, Prime supports the 1984 X.25 standard, as well as the Connection-
Oriented Network Service of the International Organization for Standardization (ISO CONS).
The major advantage of the new standards for most Prime users is that they allow connections
between Prime and non-Prime systems over full-duplex (FDX) and LAN300 links. The following
kinds of connections support the new standard:

• Between two Rev. 21.0 Prime systems over a RINGNET, LAN300, FDX, or half-
duplex (HDX) line

• Between a Rev. 21.0 Prime system and a non-Prime system that supports 1984 X.25,
over a LAN300 or FDX line

• Between a Rev. 21.0 Prime system and a 1984 X.25 PSDN

For a complete description of the X.25 and ISO CO.NS standards, refer to the following
documents:

• CCITT X.20-X.32 1984 (Red Book) CCITT X.1-X.29 1980 (Yellow Book)
• ISO/DIS 8348, Information Processing Systems — Data Communications — Network

Service Definition

A-1

Programmer's Guide to Prime Networks

•

•

ISO/DIS 8208, Data Communication —X.25 Packet Level Protocol for Data Terminal
Equipment
ISO/DP 8878 or ISO/TC97/SC6 N3438, Use of X.25 to Provide the OSI Connection-
Oriented Network Service
ISO/DP 8348/DAD2, Addendum to the Network Service Definition Covering Network
Layer Addressing

Besides Prime-to-non-Prime FDX and LAN connections, PRIMENET supports the following
X.25 1984 functionality:

• Incoming calls may be routed to a specific user process on the local system. (Calls may
continue to be routed to a port, as in X.25 1980.) Similarly, outgoing calls may be
directed to specific processes on remote systems. The mechanism for this routing is the
Called Address Extension, described later in this appendix.

• Calling and called applications may negotiate packet and window sizes more flexibly.
• The facilities field can be a maximum 109 bytes long in X.25 1984. The maximum

length in X.25 1980 is 63 bytes.
• Interrupt packets, described in the sections on X$TRAN and X$RCV in Chapter 4,

IPCF Subroutines, can be a maximum of 32 bytes long in X.25 1984. The maximum
length in X.25 1980 is 1 byte.

• In X.25 1984, a maximum of 128 bytes of user data may be included when a Fast
Select call is cleared, even if the call was previously accepted. This was possible in
X.25 1980 only in response to a call request.

• Facilities can now appear in Clear Request packets.

Optional Fields of X.25 Packets and IPCF
Parameters
The long-form IPCF subroutines (XLxxxx) contain parameters that allow you to control the
contents of the following optional fields within certain X.25 packets:

• Protocol ID
• User Data
• Facilities

The Fast Select subroutines (X$Fxxx) also allow you to specify user data. Packets that contain
protocol ID and/or User Data fields are called extended packets. The following table shows which
subroutines and parameters allow you to specify these fields and which types of packets can be
extended. In the table, prid indicates the Protocol ID; udata and clrudat indicate user data; and
fcty indicates facilities. These fields are described in more detail later in this appendix.

A-2

X.25 Programming Guidelines

r

Subroutine
XLASGN

XLCONN
X$FCON

XLGA$

XLGCON
XLGC$
XFGC
XLACPT
X$FACP

XLCLR
X$FCLR

XLGI$
XLUASN

XLGWC

Parameters
prid, udata

prid, udata, fcty
udata

prid, udata, fcty

prid, udata, fcty
prid, udata, fcty
udata

prid, udata, fcty
udata

clrudat, fcty
clrudat

prid, udata, fcty

prid, udata

prid, udata, fcty

Type of Packet

Call Request
Fast Select Call Request

Call Connected

Incoming Call

Call Accept
Fast Select Call Accept

Call Clear
Fast Select Call Clear

Clear Indication

X.25 Protocol Restrictions
The X.25 1984 protocol is not supported over links to pre-Rev. 21.0 nodes or links to 1980
PSDNs. Several problems can arise when X.25 1984 features are used over a path containing
either of these types of links. The following conditions may cause problems:

• If you include more than 63 bytes of facilities in a call request, accept, or clear, a 1980
PSDN may reject the call or truncate the facilities. A pre-Rev. 21.0 Prime system may
also reject the call.

• If you include 1984-only facilities (for example, Called Address Extension) in a call
request, accept, or clear, a 1980 PSDN may reject the call. A pre-Rev. 21.0 Prime
system will probably accept the call and pass the unfamiliar facilities unchanged.
However, if the facilities include a Called Address Extension, a call to a pre-Rev. 21.0
Prime system will probably not work, since the called system will not know to which
process the call should be directed.

• If you send an Interrupt packet longer than one byte to a pre-Rev. 21.0 system, all but
the first byte of the packet may be lost. If the long Interrupt packet is sent over a
Route-through path, the Route-through Server may reset the circuit. (Neither the
Rev. 21.0 X$TRAN nor the Rev. 21.0 Route-through Server will allow you to send an
Interrupt packet longer than one byte to a 1980 PSDN.)

A-3

Programmer's Guide to Prime Networks

• If you use an extended clear packet to clear an accepted fast-select circuit over a 1980
X.25 link, the call will be cleared, but any facilities or user data will probably be lost.

The Protocol ID and User Data Fields
User data may be included in the following packets:

• Call Request
• Fast Select Call Request
• Call Accept
• Fast Select Call Accept
• Call Clear
• Fast Select Call Clear

User data is named call user data when it is in a Call Request packet, user data when it is in a Call
Accept packet, and clear user data when it is in a Call Clear packet. The maximum size of the
Call User Data field is 128 bytes for Fast Select connections, otherwise 16 bytes.
The CCITT X.3, X.28, and X.29 standards regulate the communications protocol used in PSDNs.
These standards use the first four bytes of the Call User Data field as a protocol identifier field.
The remainder of the call user data can be used for call data.
X.25 acknowledges the existence of X.3 and other protocols by setting rules for the two most
significant bits of the first byte of the call user data and the called user data. For most user-written
applications, these two bits should be set to 1. There is no restriction on these bits in clear user
data.
Most IPCF subroutines recognize the Protocol ID field by handling it as a separate parameter
(prid). PRIMENET uses the 4-byte Protocol ID field to convey port number information in call
requests. Thus, this 4-byte field for Prime-to-Prime virtual circuits cannot be used in applications,
unless you are using the Called Address Extension facility instead of a port number. In contrast,
the protocol identifier argument is not used as part of clear user data in the clear routines,
X$FCLR and XLCLR.
When initiating a call request, an application can provide an array to retrieve any returned user
data. For connect, the array provides accept and/or clear user data. For accept, the array provides
clear user data (if any). The array corresponds to the X.25 User Data field, and thus includes the
Protocol ID field. Figure A-1 below shows how the call, called, and clear user data, as defined by
X.25, are split into the Protocol ID field and User Data field for the IPCF subroutines. For the
Fast Select routines (X$Fxxx), the User Data field is not split into two parts (protocol ID and user
data). The figure also shows the retrieve-data array, optionally provided in the call request
routines, XLCONN and X$FCON, and the accept routine, XLACPT.

A-4

X.25 Programming Guidelines

Byte

1

2

3

4

5

X.25 User Data
XLCONN XLACPT X$FCON X$FACP/X$SACP
C o n n e c t A c c e p t C o n n e c t A c c e p t C l e a r R e t r i e v e

prid

t
udata

I

prid

udata

FIGURE A-1
X.25 User Data Field

prid

t
udata

prid

udata

c l ruda ta ruda t

l l i

X.25 Facilities
Facilities fields may be included in Call Request, Call Accept, and Call Clear packets. In X.25
1984, facilities may be up to 109 bytes long; in X.25 1980, the maximum size is 63 bytes.
Over X.25 1980 connections, PRIMENET explicitly supports the following facilities:

• Fast Select
• Window and packet size negotiation
• Acceptance of a call with reverse charging

Over X.25 1984 connections, the following additional facilities are supported:
• Called address extension
• Window and packet size negotiation for Remote Login calls

Note
Facilities that are not explicitly supported are passed on unchanged by
PRIMENET.

A-5

Programmer's Guide to Prime Networks

Called Address Extension
In 1980 X.25 connections, incoming calls are directed to ports, and user processes receive calls by
assigning ports. Calls are directed to ports as follows:

• The Called Address in the Incoming Call packet must match one of the X.25 addresses
defined for the local node in the network configuration.

• The protocol ID field is checked. If the first byte is hex CO, then the second byte is
assumed to be a port number.

In 1984 X.25 connections, ports can still be used, but the Called Address Extension can also be
used to route calls to user processes, circumventing the port mechanism. The Called Address
Extension is an optional part of the facilities field of Incoming Call packets, and can have up to
41 hexadecimal digits. The Called Address, together with the appended Called Address
Extension, comprises the Network Service Access Point (NSAP) address. Over X.25 1984 links, ^^^
a process that has sufficient privilege can use the XLASGN routine to register interest in
incoming calls with any of the following characteristics:

• Called Address matches a configured X.25 address for the local node.
• Called Address starts with a given prefix.
• Called Address ends with a given suffix.
• Called Address Extension starts with a given prefix. _,. ^
• Port number matches a given number.
• Protocol ID starts with a given prefix.
• User data starts with a given prefix.

Only certain combinations of these criteria can be used; refer to the description of XLASGN in
Chapter 4, IPCF Subroutines, for further information.
To place a call to a remote process using the Called Address Extension, place the Called Address
E x t e n s i o n i n t h e f c t y fi e l d i n y o u r X L C O N N c a l l . - ^ W

Window and Packet Size Negotiation
As mentioned in Chapter 3, IPCF Programming Principles, you can increase throughput by
changing a virtual circuit's window and packet sizes. Window and packet sizes can be negotiated
between calling and called applications, subject to the following restrictions:

• CONFIG_NET imposes certain limits on window and packet sizes. The maximum
supported packet size is configurable to 512, 1024, or 2048 for RINGNET, and is 256
bytes for synchronous lines. Refer to the PRIMENET Planning and Configuration
Guide for more information.

• Some PSDNs impose limits on window and packet sizes.

A-6

X.25 Programming Guidelines

r

Window and packet sizes are negotiated by means of the facilities fields in the Call Request and
Call Accept packets. The calling application sets the Call Request facilities by specifying a fcty
argument in the call to XLCONN. The called application sets the Call Accept facilities by
specifying a fcty argument in the call to XLACPT. The specific numbers that should be placed
into the fcty field are listed later in this chapter.
If the calling application uses the XK$FCT key when calling XLCONN, PRIMENET supplies a
predefined facilities field for the Call Request packet. This field has one value for direct Prime-
to-Prime links and other values for links through PSDNs. The actual value varies with the PSDN.
The only risk in using this strategy occurs when you run an international link over multiple
PSDNs. If your local PSDN link increases either window or packet size, the international gateway
to the next PSDN may reject the packet facility request and clear your call attempt.
If you provide your own facility field, you must be sure to comply with the restrictions listed
earlier in this section. For a Prime-to-Prime connection, if you request a packet or window size
greater than that supported by PRIMENET over the medium you are using, PRIMENET will
reduce these values to the maximum supported by the medium.
A Call Accept packet without a facilities field grants the caller's required window and packet size.
If the called application requires different values, it should supply a facilities field in the call to
XLACPT. The called application may negotiate only values closer to the X.25 defaults of
window size 2 and packet size 128.

Facilities Field Values
The following table defines X.25 international facility formats for determining window and
packet sizes. The window and packet size facility elements consist of 3 bytes each. You can
include either or both in the facility field, and combine them with other facility elements.

Facility Element First Byte Second Byte Third Byte

Window s ize 01000011 OOOOOxxx OOOOOyyy
P a c k e t s i z e 0 1 0 0 0 0 1 0 OOOOzzzz OOOOvwv

P a r a m e t e r M e a n i n g

x x x W i n d o w s i z e , b i n a n/ coded I[000 not allowecI), for transmissioi

yyy

zzzz

W W

called node to calling node
Window size, binary coded (000 not allowed), for transmission from
calling node to called node
Packet size code (see below) for transmission from called node to call
ing node
Packet size code (see below) for transmission from calling node to
called node.

A-7

Programmer's Guide to Prime Networks

The packet size code is the binary coded logarithm base 2 of the packet size, expressed in bytes.

zzzzA'wv 0100 0101 0110 0111 1000 1001 1010
Size (bytes) 16 32 64 128 256 512 1024

The description above limits the window size to a maximum of 7 bytes, which is the maximum
permitted for normal X.25 sequence numbering, and also the maximum value currently supported
by PRIMENET. For example, suppose you wanted a window size of 6 and a packet size of 256
for the calling node's transmissions, and for the called node's transmissions you wanted the
normal default values of 2 and 128. The facility field required would be the following 6 bytes:

01000011 00000010 00000110 01000010 00000111 00001000

The encoding of Fast Select and reverse charging is as follows:

First Byte

000000001
Second Byte
frOOOOOc

P a r a m e t e r M e a n i n g
f 1 = F a s t S e l e c t

0 = not Fast Select, r is then ignored
r 1 = Fast Select, restricted-response (clear only)

0 = Fast Select, call may be accepted
c 1 = reverse-charged ca l l

0 = caller pays

The encoding for Calling/Called Address extension is shown below. This must be preceeded by a
marker:

First Byte Second Byte
00000000 00001111

First Byte Second Byte Third Byte Remaining Bytes
Calling
Address
Extension

11001011 nnnnnnnn ccmmmmmm m BCD digits,
two per byte

Called
Address
Extension

11001001 nnnnnnnn ccmmmmmm m BCD digits,
two per byte

A-8

X.25 Programming Guidelines

Parameters
cc

Meaning
00 = Entire OSI NSAP address
01 = Partial OSI NSAP address
10 = Non-OSI value
11 = Reserved

r

You should use the non-OSI value, unless your application is designed
to participate in an OSI network and you are party to an address regis
tration scheme.

mmmmmm No. of BCD digits following this byte. Legal values are 0 through 40.
nnnnnnnn A value depending on m, the number of BCD digits in the address.

The value is computed from

1 + (m + l)/2

Legal values are 1 through 21.

A-9

FTS Error Messages

This appendix lists and explains the error messages produced by FTS. The messages are divided
into two sections as follows:

• General error messages that any FTS utility may produce.
• Messages produced by the FTR utility. Many of the messages described here are those

that a programmer using FT$SUB would need to know.

General Error Messages
The following errors can occur in any of the FTS utilities.

Argument too long. (F$ARTL)
You specified an argument that was longer than the maximum argument length allowed.

Argument too short. (F$ARTS)
You specified an argument that was shorter than the minimum argument length allowed.

FTS not ready for use. (Q$QNRD)
The FTS database has not been initialized with the FTGEN _NITIALIZE_FTS command.

No help is available on the subject xxxxxx
You have requested help regarding a topic for which online documentation is unavailable.

The FTS database is invalid. (Q$NVDB)
The FTS database has been corrupted, or an FTGEN INITIALIZE_FTS command has not been
performed after FTS installation.

B-1

Programmer's Guide to Prime Networks

FT$SUB Error Messages
The following messages may occur when you are using FT$SUB.

Bad command line format. (F$BDCL)
The format of the command line is incorrect. For example, you should type FTR LETTER
-CANCEL instead of FTR -CANCEL LETTER.

Bad device name. (F$BDDN)
You typed an invalid -DEVICE name. LP is the only correct device name.

Bad site name format. (F$BDSN)
The site name must be a valid one and adhere to the PRIMOS filenaming standard. See the
Prime User's Guide for more information on naming standards.

CAM files not supported on the remote system. (F$PCNT)
You are trying to transfer a CAM file to a site which is not capable of handling such files (that
is, a pre-Rev. 20 site or a Rev. 20 site with disks created by a pre-Rev. 20.0 revision of the
MAKE utility).

Command lines must be null. (F$CLMN)
You specified an FTR management option and included extraneous items on the command
line. Reissue the command, ensuring that the command line contains only the items specifically
documented for the management option you are using.

Conf licting options . (F$CNOP)
The options you specified conflict. For example, you specified a request with both -COPY and
-NO_COPY when it must be either one or the other option.

Copy flag may not be modified. (F$CPMD)
You tried to modify the copy flag, which is not allowed. For example, you may have entered
the following command:

FTR -MODIFY 2 -COPY

Copy option only applies to local source file. (F$CPLS)
You specified this option when you were fetching a file from a remote site, which is not
allowed. This option is relevant only when you are sending local files.

Delete option only applies to local source file. (F$DLLS)
You specified this option when you were fetching a file from a remote site, which is not
allowed. This option is relevant only when sending local files.

B-2

FTS Error Messages

Destination file access mode invalid. (F$DFAC)
The destination file type is not one that FTS supports. Only SAM, DAM, SEGSAM,
SEGDAM, and CAM files are supported.

Destination file has not been specified. (F$DFNS)
You did not specify a destination pathname.

Destination file may not be modified. (F$DFMD)
You tried to modify the destination file option, which is not allowed.

Destination site is not configured. (F$DSNC)
The destination site has not been configured in the FTS configuration for your site.

Destination site may not be modified. (F$DSMD)
You tried to modify the destination site name, which is not allowed.

Destination user name invalid. (F$DUIN)
You used an invalid destination user ID. The user ID must conform to the PRIMOS standard
for user IDs. See the Prime User's Guide for more information.

Destination user not specified when destination notify requested.
(F$DUNS)

You did not specify a destination user (with -DSTN_USER). You must specify a destination
user if you use the FTR -DSTN_NTFY option when sending a file to a remote site.

Device transfer from remote site not allowed. (F$DRNA)
You attempted to fetch a file from a remote site and send it a local device, which is not
allowed.

Duplicate option. (F$DUOP)
You duplicated one or more options. For example, the following command duplicates the
-SRC_NTFY option, which is not allowed:

FTR <ASH>TREE <ELM>BRANCH -SRC_NTFY -DSTNJJSER CLARKE -SRC_NTFY

Full pathname too long. (F$FPTL)
You exceeded the maximum pathname length of 128 characters.

Hold flag may not be modified. (F$HDMD)
You tried to modify the hold flag, which is not allowed. For example, you may have entered
the following command:

FTR -MODIFY 3 -HOLD

B-3

Programmer's Guide to Prime Networks

Illegal file or directory conversion. (F$IFDC)
You used the -SRC_FILE_TYPE or -DSTN_FILE_TYPE options in an invalid combination.

Invalid defer date/time supplied. (F$IDDT)
You have specified the date/time value for the -DEFER option to FTR in an invalid format.

Invalid priority supplied. (F$IPRI)
The priority value you have specified is not in the valid range from 1 through 9.

Invalid destination file type. (F$IDFT)
You did not specify a correct destination file type.

Invalid external name. (F$INEX)
The name you specified for the request name is not a valid PRIMOS filename. See the Prime
User's Guide for the correct filename syntax.

Invalid message level. (F$INMS)
You specified an FTS log file message level other than the following valid ones: NORMAL
(1), DETAILED (2), STATISTICS (3), and TRACE (4).

Invalid source file type. (F$ISFT)
You specified an incorrect source file type.

Message level specif ied but request log treename omitted. (F$MBNL)
You specified the -MSGL_LEVEL option with a specific level (for example, DETAILED),
but you did not specify a log filename.

Missing command line parameter. (F$MCLP)
The command line has a required parameter missing. For example, the following did not
specify a destination user ID with the -DSTN_USER option:

FTR <ELM>TREE <ASH>BURN -SRC_NTFY -DSTNJJSER

Networks unavailable. (F$NWNA)
You tried to use FTR to submit a request, but the network has been shut down or not
configured.

No Copy flag may not be modified. (F$NCMD)
You tried to modify the NO_COPY flag, which is not allowed. For example, you may have
entered the following command:

FTR -MODIFY 2 -NO COPY

B-4

FTS Error Messages

No copy option only applies to local source file. (F$NCLS)
You specified this option when you were fetching a file from a remote site, which is not
allowed. This option is relevant only when you send local files.

No delete option only applies to local source file. (F$NDLS)
You specified this option when you were fetching a file from a remote site, which is not
allowed. This option is relevant only when you are sending local files.

No eligible request of this name found. (F$NERF)
You attempted to modify, abort, release, hold, or cancel requests with the specified name
without success because either they do not exist or they are in an ineligible state. For example,
you would receive this error if you tried to hold a request that was already HELD.

No request of this name found. (F$NRFD)
You specified a nonexistent request name when you performed a -DISPLAY or --STATUS of
a particular request. Check that you specified the right name, or use the request number in the
command.

No requests queued. (F$NRQD)
You tried to list the contents of a queue that is empty.

Not configured. (F$NTCF)
You specified a site, server, or queue that had not been configured with FTGEN.

Only one management option allowed. (F$OMOP)
You specified more than one management option, which is not allowed. For example, FTR
-ABORT LETTER -CANCEL is not allowed.

Passworded pathname must be fully qualified. (F$PSFQ)
You did not specify a passworded pathname from the directory down to the filename, and you
did not enclose the complete pathname, including the password, in single quotes.

Priority x for administrator use only. (F$PRAD)
You have specified a priority value which is reserved for administrator use only. You should
specify a value in the range from 1 through 7.

Queue blocked. (Q$QBLK)
You tried to submit a request to a queue that has been blocked with the FTGEN
BLOCK_QUEUE command. The queue must be unblocked with the FTGEN
UNBLOCK_QUEUE command so that requests can be accepted.

Queue does not exist. (Q$QNEX)
You tried to submit a request to a request queue that has not been configured with FTGEN.

B-5

Programmer's Guide to Prime Networks

Queue full. (Q$FULL)
The request queue is full.

Queue name may not be modified. (F$QNMD)
You tried to modify the -QUEUE option, which is not allowed.

Remote treename incorrectly specified. (F$RTIS)
You specified a pathname for the destination site that did not include disk and directory names.
You must specify the entire pathname in the command line.

Request already aborting. (F$RQAB)
You tried to use an FTR management option (except -STATUS or -DISPLAY) on an aborting
request, which is not allowed.

Request already put on hold by FTS. (F$RQHF)
You tried to hold or abort a request that has already been held by FTS, which is not allowed.

Request already put on hold by operator. (F$RQHO)
You tried to hold or abort a request that has already been held by an operator, which is not
allowed.

Request already put on hold by user. (F$RQHU)
You tried to hold or abort a request that has been put on hold already.

Request held by operator. (F$RHPR)
You tried to release an operator-held request.

Request log treename same as source or target treename. (F$RLST)
You specified a log filename that is not different from the source or destination pathname.

Request waiting. (F$RQWT)
You tried to release or abort a waiting request, which is not allowed.

Segment dir. transfer to/from a Rev 1 site is not supported. (F$PINS)
You tried to transfer a SEG file to or from a REV 1 FTS site, which is not allowed.

Source file access mode invalid. (F$SFAC)
The source file type is not one that FTS supports. Only SAM, DAM, SEGSAM, SEGDAM,
and CAM files are supported.

B-6

FTS Error Messages

Source file does not exist. (F$SFNE)
You tried to transfer a nonexistent file. Check to see that you specified an existing file for the
transfer request.

Source file has not been specified. (F$SFNS)
You did not specify a file to be sent or fetched in the transfer request.

Source file type may not be modified. (F$SFMD)
You tried to modify the source file type, which is not allowed.

Source or destination site must be local. (F$SDSL)
You cannot make file transfers between two remote sites. You can transfer requests in
loopback either on a local site or between local and remote sites only.

Source site is not configured. (F$SSNC)
You specified a source site that has not been configured with FTGEN.

Source site may not be modified. (F$SSMD)
You tried to modify the source site, which is not allowed.

Source user name invalid. (F$SUIN)
You specified an incorrect source user ID. User IDs must conform to the PRIMOS naming
standard. See the Prime User's Guide for more information.

Source user not specif ied when source notify requested. (F$SUNS)
You did not specify the source user (with -SRC_USER) when fetching a file from a remote
site. You must specify a source user if you use the -SRC_NTFY option in the command line.

Specified and actual source file types differ. (F$SFTD)
You used the -SRC_FILE_TYPE option, but the file type that you specified differs from the
actual source file type.

Transfer in progress. (F$TRPR)
You tried to release, cancel, modify, or hold a transferring request, which is not allowed.

Transfer rejected: Problem with remote file.
The file could not be opened for transfer. Check to be sure you have spelled the filename
correctly. Also, check with the remote site to be sure that there is sufficient disk space for the
file you are transferring, and that the remote server has access to the destination directory.

B-7

Programmer's Guide to Prime Networks

Transfer rejected: Will not retry.
This message, which usually appears along with other messages, indicates that an error has
occurred and that retrying the transfer will not help until the error is corrected. The request is
put on hold.

Transfer to a device as well as a file is not allowed. (F$TDFN)
You cannot specify both a destination file and a destination device (-DEVICE LP) in one
transfer request.

Transferring a file to itself is not possible. (F$TFNP)
You used only one filename for two files in a transfer request. The source and destination file
cannot be the same.

Transferring a SEG directory to a DEVICE is not supported. (F$TDNS)
You cannot print a SEG file type on a remote line printer.

Unable to create temporary file. (Q$UCTF)
The number of temporary files in the FTSQ* directory may have reached the maximum
number as a result of queued requests. The operator should investigate the possibility of any
old requests being cancelled. In addition, check to be sure the correct FTS-related access rights
are assigned. Check to be sure that the disk containing FTSQ* is not full, and that the quotas
on FTSQ* and its disk are set to appropriate values.

Unknown keyword. (F$BDKW)
An argument on the command line is unknown. For example, the following shows an unknown
keyword, -FRED. The command line should also include -DSTNJJSER (abbreviation is
-DS) for the user ID FRED:

FTR <ASH>TREE <ELM>BRANCH -FRED

Unkn own opt i on. (F $UNOP)

You specified an unknown option in the command line. For example, the following command
specifies an extra option, -EXTRA, that is not known to FTS:

FTR <ELM>TEST <ASH>ANSWERS -DSTN USER JONES -SRC NTFY -EXTRA

B-8

Clearing Causes and Diagnostic
Codes

The following table lists predefined clearing causes (CC$xxx) and diagnostic codes (CD$xxx) for
the second word of the array. The numeric values associated with the codes are provided. For
your convenience, the values are shown in hexadecimal, octal, and decimal form. Different
communications applications (NETLINK, remote login, etc.) may display these values in
different forms.
The clearing causes shown match the masked (not shifted) high-order byte of the second word of
the virtual circuit status. A FORTRAN test would be

IF (AND(VCSTAT(2),: 177400) EQ. CC$CLR)...

Clearing Value in Value in Value in
Cause Hexadecimal Octal Decimal Meaning
CC$BAD '0300' 1400 768 The call request packet is

invalid.

CC$BAR '0B00' 5400 2816 Access to the requested
system has been barred.

CC$BSY '0100' 400 256 The called system is not
accepting connections
right now.

CC$CLR '0000'

CC$DWN '0900'

CC$GCN '8500'

CC$GPE '9300'

4400

205

223

2304

133

147

This circuit was explicitly
cleared. There might be a
diagnostic code from you
or PRIMENET.
The system to which this
circuit is connected is not
currently operating.
Private network
congestion.
Private network procedur
al error.

C-1

Programmer's Guide to Prime Networks

Clearing
Cause

Value in
Hexadecimal

Value in
Octal

Value in
Decimal Meaning

CC$GRN '9900' 231 153 Private network reverse
charging.

CC$IAD '0300' 1400 768 Illegal or unknown
address.

CC$LPE '1300' 11400 4864 Local procedure error.
(See CC$RPE.)

CC$NET '0500' 2400 1280 Temporary packet net
work congestion.

CC$NOB '0D00' 6400 3328 The requested system is
not obtainable through the
packet network.

CC$RPE

CC$RRC

'1100'

'1900'

10400

14400

4352

6400

Remote procedure error.
Violation of X.25 protocol
through a packet network.
The requested system
refuses a collect call.

Diagnostic
Code

Value in
Hexadecimal

Value in
Octal

Value in
Decimal Meaning

CD$BSY '00FD' 375 253 The target system cannot
accept any more connec
tions at this time.

CD$CSP '0040' 100 64 Call setup problem.
CD$DTE '00A0' 240 160 DTE-specific signals.
CD$DRC '00A3' 243 163 DTE resource constraint.
CD$DWN '00FA' 372 250 The system to which this

circuit is directed is not
currently operating.

CD$FCN '0041' 101 65 Facility code not allowed.
CD$FPN '0042' 102 66 Facility parameter not

allowed.

CD$GFI '0028' 050 40 Invalid GFI.

CD$IAD '00FB' 373 251 A connection request
specified an unknown or
illegal address.

C-2

Clearing Causes and Diagnostic Codes

Diagnostic
Code

Value in
Hexadecimal

Value in
Octal

Value in
Decimal Meaning

CD$ICA '0044' 104 68 Invalid calling address.
CD$IDA '0043' 103 67 Invalid called address.
CD$EFL '0045' 105 69 Invalid facility length.
CD$IPR '0002' 002 Invalid P(R). Acknowl

edgement for packet not
in window.

CD$IPS

CD$IP1

CD$IP2

CD$IP3

CD$IP4

CD$IP5

CD$IP7

CD$IR1

'0001'

'0014'

'0015'

'0016'

'0017'

'0018'

'001A'

'0011'

CD$LOP '00F6'

CD$LPE '00F9 '

CD$MEM '00F4'

CD$MFT 'OOEF'

C D $ N A I ' 0 0 0 0 '

001

357 239

Invalid P(S). Lost or
duplicate packet, or
window size mismatch
between PSDN and Prime.

024 20 Packet type invalid for
state PI.

025 21 Packet type invalid for
state P2.

026 22 Packet type invalid for
state P3.

027 23 Packet type invalid for
state P4.

030 24 Packet type invalid for
state P5.

032 26 Packet type invalid for
state P7.

021 17 Packet type invalid for
state Rl.

366 246 A Route-through call
request is looping.

371 249 Local procedure error. A
violation of the X.25
protocol

364 244 The Route-through Server
does not have enough
memory for a call to be
routed.
The segment in which a
parameter was stored has
been deallocated.
No additional information.

C-3

Programmer's Guide to Prime Networks

Diagnostic
Code
CD$NRU

Value in
Hexadecimal

'OOFC

Value in
Octal
374

Value in
Decimal
252

Meaning
The target system has no

CD$NSV '00F8'

CD$PIC

CD$RTD

'002 A'

CD$PNA '00FF'

CD$PNL '0020'

CD$PTI '0010'

CD$PTL '0027'
CD$PTS '0026'

CD$RST '0029'

'00F3'

CD$RTE '00F7 '

CD$SNU 'OOFE'

CD$TCA '00F2 '

CD$TCE '0090'

CD$TCI '0032'

370

052

377

040
020
047
046
051

363

367

376

362

248

42

255

32
16
39
38
41

243

247

254

242

more remote processes
available at this time.
(Used with remote login.)
The PRIMENET server
process is not running.
Packet type not compati
ble with facility.
The port to which this call
is directed is not assigned
in the target system.
Packet not allowed.
Packet type invalid.
Packet too long.
Packet too short.
Restart with nonzero
Logical Channel Number.
The Route-through Server
is down or inconsistencies
exist between different
network configuration
files.
A Route-through protocol
error was detected.
The target system is not
yet available for login.
(Used with remote login.)
A Call Request has not
been answered by the tar
get system, so the circuit
was cleared.

220 144 Timer expired or retrans
mit count surpassed.

062 50 Timer expired for clear
indication. Sent to remote
system in retransmitted
clear request.

C-4

Clearing Causes and Diagnostic Codes

r

Diagnostic Value in Value in Value in
Code Hexadecimal Octal Decimal Meaning
CD$TCR '00F0' 360 240 A clear request has not

been confirmed by the tar
get system, so the circuit
has been cleared and
dropped.

CD$TIC

CD$TIN

CD$UIC

'0031'

'0091'

CD$TME '0030'

CD$TMO '00F5'

CD$TRE '0033'

CD$TRT '0034 '

'002B'

C D $ U I N ' 0 0 2 C
CD$ULC '0024'

CD$UNP '0021'
CD$URC '001B'

061

221

49

145

Call not accepted within
100 seconds.
Timer expired for inter
rupt confirmation. Sent to
remote system in reset
request.

060 48 Timer expired. No addi
tional information.

365 245 The Route-through Server
experienced a virtual
circuit timeout.

063 51 Timer expired for reset
confirmation.

063 52 Timer expired for restart
indication.

053 43 Unauthorized interrupt
confirmation.

054 44 Unauthorized interrupt.

044 36 Packet on unassigned
logical channel.

044 36 Unidentified packet.

033 27 Unauthorized reset
confirmation.

C-5

Prime Network Programming
Glossary

This appendix contains a glossary of terms that may be of use to use to you as a programmer
writing distributed applications. Terms that are in italics in definitions are defined elsewhere in
the glossary.

asynchronous communication
A method of transmitting data in which each character is preceded by a start bit and followed
by a stop bit. The time interval between the characters may vary.

asynchronous line
A line that carries asynchronous communication.

bit
An acronym for binary digit. Eight bits constitute a byte.

byte
Eight bits of data. A character, for example, is one byte.

CCITT
See Consultative Committee for International Telephony and Telegraphy.

communication line
See communication link.

communication link
The connecting medium between two systems that allows them to transmit and/or receive data.
At Rev. 21.0, types of communication links include LAN300, RINGNET, synchronous lines
(full-duplex and half-duplex), and Packet Switched Data Networks (PSDNs). Two systems can
also be linked by one or more intervening gateway nodes.

CONFIG NET
PRIMENET's global network configuration utility (or configurator). Also, the command used
to invoke the configurator.

GL-1

Programmer's Guide to Prime Networks

Consultative Committee for International Telephony and Telegraphy (CCITT).
An advisory committee established under the auspices of the United Nations to recommend
worldwide standards.

event
A significant system or network occurrence such as a cold start, machine check, disk error, or
network link problem.

FDX
See full-duplex.

File Transfer Generation (FTGEN)
The File Transfer Service (FTS) utility that a System Administrator or Network Administrator
uses to configure the FTS database. FTGEN is described in the PRIMENET Planning and
Configuration Guide.

File Transfer Manager
See YTSMAN.

File Transfer Operator (FTOP)
The File Transfer Service (FTS) utility that an operator uses to manage the FTS system. FTOP
is described in the Operator's Guide to Prime Networks.

File Transfer Request (FTR)
The File Transfer Service (FTS) utility for submitting transfer requests.

File Transfer Service (FTS)
A queued file transfer program that enables files to be transferred between Prime systems in a
network. FTS comprises the following utilities: File Transfer Request (FTR), File Transfer
Generation (FTGEN), and File Transfer Operator (FTOP).

framing
The process of prefixing and suffixing a message with control characters before sending it
over a communication link. The control characters are said to frame the message.

FTOP
See File Transfer Operator.

FTR
See File Transfer Request.

GL-2

Prime Network Programming Glossary

FTS
See File Transfer Service.

full-duplex
A communication mode in which both systems can send and receive signals at the same time.
In a PRIMENET environment, full-duplex communication occurs over a permanently
configured, dedicated connection (cables or leased telephone lines). Full-duplex lines can link a
Prime system to a PSDN or to another Prime system.

gateway
See gateway node.

gateway access
The access rights between two systems that communicate through a gateway node. For
example, consider the configuration shown in Figure GL-1. Systems A and C communicate
through gateway node B. The gateway access from node A to node C is IPCF; the gateway
access from node C to node A is RLOG. Gateway access is defined during network
configuration.

IPCF

A B\

RLOG

FIGURE GL-1
Gateway Access

gateway node
A system on which the Route-through Server is configured. A gateway node can route
messages between two other systems. Two systems may communicate via a gateway node even
if they are not directly connected.

GL-3

Programmer's Guide to Prime Networks

half-duplex
A communication mode in which data transmission occurs in only one direction at a time. Each
system alternates between sending and receiving signals. In a PRIMENET environment, half-
duplex communication occurs over temporary connections (generally, dialup telephone lines).
Half-duplex PRIMENET lines may link two Prime systems, but may not link a Prime system
to a non-Prime system or to a Packet Switched Data Network (PSDN).

HDX
See half-duplex.

HDX network/HDX subnetwork
The set of all half-duplex (HDX) nodes and lines in a network.

HDX node
A node that has a half-duplex line attached to it.

header
The beginning portion of a packet that contains information such as the IDs of the target and
sending node or packet type.

Interprocess Communications Facility (IPCF)
A set of subroutines that permit applications to send and receive messages within a Prime
network, or to transfer messages between processes on the same system. Also, an access right
(selected through CONFIG NET) that enables systems to communicate using IPCF subroutines
only. IPCF access is the minimum access that you can configure between systems.

International Organization for Standardization (ISO)
Organization responsible for developing Open Systems Interconnection (OSI) model, a
7-layered network architecture.

IPCF
See Interprocess Communications Facility.

ISO
See International Organization for Standardization.

LAN
See Local Area Network.

GL-4

Prime Network Programming Glossary

LAN300
The Prime IEEE 802.3 compliant Local Area Network that uses a bus topology. A standard
LAN300 is composed of bus segments, each of which can be a maximum of 500 meters in
length. Devices are connected to a LAN300 at a station, where a controller, transceiver, and tap
are attached to the bus segment. A station supports a host or a cluster of terminal or serial
printers or both. The LAN300 uses the Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) access method.

LCN
The X.15 Logical Channel Number of a virtual circuit. When combined with the LCGN, forms
the X.25 Virtual Circuit Number.

LCGN
The X.15 Logical Channel Group Number of a virtual circuit. When combined with the LCN,
forms the X.25 Virtual Circuit Number.

Level 1
PRIMENET's hardware interface. This level (or layer) acts as an intermediary between the
physical transmission medium (cable or transmission line) and Level 1.

Level 2
PRIMENET's link level. It describes a protocol for transferring data between two directly
connected systems.

Level 3
PRIMENET's packet level. It creates and controls connections across the network, handles error
recovery, and controls the flow of data between processes on a pair of communicating systems.

Local Area Network (LAN)
A network in which independent computer systems are physically connected and communicate
at a high speed over a short distance, such as within a building or building complex. RINGNET
is the Prime Local Area Network that uses a ring configuration. LAN300 is the Prime IEEE
802.3 compliant LAN that uses a bus configuration.

local system
A system on a network from which a user issues commands to communicate with another
remote system.

NETLINK
A PRIMENET utility that enables a user to gain access to another networked Prime system or a
non-Prime system across a Packet Switched Data Network (PSDN) if that non-Prime system
adheres to the CCITT PAD protocols (X.3IX.281X29).

GL-5

Programmer's Guide to Prime Networks

NETMAN
See Network Manager Process.

network
A group of independent computer systems that are connected by communication media such as
PSDNs, LANs, and synchronous lines and that communicate and share resources. A network
can consist of systems that are all physically connected and communicate over short distances,
as in a LAN, or of systems that use different communication media to communicate over long
distances.
The term network is sometimes used synonymously with subnetwork; for example, ring
network or HDX network can refer to subsets of a larger network.

Network Administrator
The person responsible for maintaining the proper and continuous operation of a network.
Tasks include using CONFIG NET to configure the network, ensuring that appropriate security
measures are taken, and maintaining the daily network operation. Sometimes the same person
serves as Network Administrator and System Administrator. See also System Administrator.

network configuration
A description of the systems, services, and communication media that make up a network.

network configuration file
The file that contains the network configuration in binary format. The Network Administrator
creates this file through CONFIGNET. At network startup time, this file is loaded into
PRIMENET by the START NET command (unless a cache file is used).

Network Manager Process (NETMAN)
A process that handles network activity. NETMAN is X.25 Level 2 and Level 3 PRIMENET.
NETMAN appears on the STATUS USERS list as nsp (network server process).

Network Process Extension (NPX) facility
An internal PRIMOS facility that provides a remote procedure call mechanism between any
two PRIMENET systems. Remote File Access (RFA) uses NPX.

network protocol
See protocol.

node
An independent computer system that is part of a PRIMENET network.

NPX
See Network Process Extension Facility.

GL-6

Prime Network Programming Glossary

r

packet
A sequence of data and control characters that are arranged in a specific format and transmitted
as a unit.

Packet Assembler/Disassembler (PAD)
Provides a number of functions: controlling normal terminal operation, controlling normal
X.25 circuit functions, passing characters from terminal to host over a virtual circuit, passing
characters to terminal as they are received from host over virtual circuits, handling call
clearing, and providing other functions using the X.3 recommendation. NETLINK emulates a
PAD.

Packet Switched Data Network (PSDN)
A network in which the X.25 protocol defines communication between X.25-compatible
equipment called Data Terminal Equipment (DTE) and processors called Data Circuit
Termination Equipment (DCE). To transmit data, PSDNs divide long messages into shorter
units with a fixed maximum length (packets). Examples of PSDNs include TELENET,
UNINET, TYMNET, PSS or an equivalent private network.

packet size
The number of bytes in a packet.

PAD
See Packet Assembler/Disassembler.

path
The sequence of intervening systems between two given systems in a network.

port
An address within a node to which an incoming network request can be routed. Each node in a
PRIMENET network has a pool of available ports that a program running under PRIMOS can
assign.

PRIMENET
Prime's distributed networking software that offers local and wide-area networking facilities.

PRIMENET address
A numeric address that PRIMENET uses internally to identify a node. CONFIG NET generates
this address based on the name of the node.

protocol
A set of rules governing communication between two systems in a network.

GL-7

Programmer's Guide to Prime Networks

PSDN
See Packet Switched Data Network.

PSDN address
A unique sequence of as many as 15 digits assigned by a PSDN to any node connected directly
or indirectly to the PSDN. An indirect connection is indicated when a 2-digit subaddress is
used.

PSDN gateway
A communication link between two different PSDNs. Can be referred to as an X.15 gateway.

Remote File Access
See RFA.

remote login
See RLOG.

remote system
A system that can communicate with the local system through a network.

remote user
A user on a remote system.

RFA
Remote File Access. A PRIMENET intersystem service or access right (selected through
CONFIG NET) that enables a user to access files on a remote system as though the files were
on the local system.

ring
See ring network.

ring network
A type of Local Area Network (LAN). Prime's ring LAN, RINGNET, is a token-passing ring
network.

RINGNET
One of Prime's LANs for Prime-to-Prime communications. A RINGNET network is composed
of Prime systems that are connected by cable in a ring configuration. Each system is logically
connected to all other systems on the ring. RINGNET uses a token-passing protocol to control
communication around the ring.

GL-8

Prime Network Programming Glossary

ring node ID
A number from 1 through 247 that identifies, and is unique to, a particular node on a
RINGNET network.

RLOG
Remote login. A PRIMENET service that enables users to log in to a remote system from a
local terminal without logging in to the local system first. The local and remote systems must
be connected directly or connected through one or more gateway nodes. The Network
Administrator must assign remote login access rights (selected through CONFIG NET) during
network configuration. These access rights are checked only on the remote system.

Route-through
The message-routing operation performed on a gateway node that connects two systems or
networks.

Route-through Server (RT SERVER)
The server that performs Route-through and enables a system to act as a gateway node for
communication between nodes not directly connected through a ring, PDSN, or synchronous
line.

server
A cooperating set of processes available to perform one or more functions. FTS servers service
local request queues and incoming requests from remote systems.

slave process
A process on a local system that handles a request that a user on another system makes to
access files or to attach to a directory on the local system. A slave acts for a single remote user
until the remote user releases the slave process. The number of slave processes available
(configured by the System Administrator) depends on whether the local system is using the
Route-through Server or the File Transfer Service (FTS) or both.

synchronous communication
Transmission in which data, characters, and bits are transmitted at a fixed rate. The transmitting
and receiving systems are synchronized, thus eliminating the need for start and stop bits.
Generally, synchronous communication offers more efficient line usage, better error checking,
and higher speeds of transmission than asynchronous communication.

synchronous line
A line that carries synchronous communication.

System Administrator
The person responsible for maintaining the proper and continuous operation of a system. The
System Administrator's duties can include network-related tasks such as setting PRIMENET-
related ACL rights, and setting up the File Transfer Service (FTS). At times, the same person
serves as System Administrator and Network Administrator. See also Network Administrator.

GL-9

Programmer's Guide to Prime Networks

timeout
The condition that occurs when a transmitting node sees neither a token nor a packet within a
certain time period.

virtual circuit
A logical network connection that enables transmission of data between two processes. IPCF
subroutines are used to establish virtual circuits in PRIMENET. PRIMENET supports 255
virtual circuits.

window size
The maximum number of frames or packets that can be sent before an acknowledgment must
be received. Window size is configurable only for Packet Switched Data Network (PSDN)
links.

X J

A CCITT recommendation entitled "Packet Assembly/Disassembly Facility in a Public Data
Network". X.3 outlines the procedures for packet assembly/disassembly for asynchronous
transmissions.

X.25
A CCITT recommendation entitled "Interface between Data Terminal Equipment (DTE) and
Data Circuit Terminating Equipment (DCE) for Terminals Operating in the Packet Mode and
Connected to Public Data Networks by Dedicated Circuit". The X.25 recommendation and the
X.25 protocol, based on the recommendation, define communication between X.25-compatible
equipment called Data Terminal Equipment (DTE) and processors called Data Circuit
Termination Equipment (DCE) in a PSDN.

X.28
A CCLTT recommendation entitled "DTE/DCE Interface for a Start-Stop Mode Data Terminal
Equipment Accessing the Packet Assembly/Disassembly Facility (PAD) in a Public Data
Network Situated in the Same Country". The X.28 recommendation describes the interfacing
procedures that enable an asynchronous terminal to be connected to a PAD.

X.29
A CCITT recommendation entitled "Procedures for the Exchange of Control Information and
User Data Between Assembly/Disassembly Facility (PAD) and a Packet Mode DTE or Another
PAD". The X.29 recommendation describes the interfacing procedures that enable a PAD to
communicate with an X.25 network.

X.121
A CCITT recommendation entitled "International Numbering Plan for Public Data Networks".
The X.121 recommendation describes an addressing scheme, supported by NETLINK, to
uniquely identify computer systems within PSDNs.

GL-10

r̂

r
r

Index

Index

Accepting a call, 4-22
Allocating variables, 3-3
Architecture of PRIMENET, 1-1,1-3
Assigning a port, 2-3, 4-4
Assigning ports, A-6

Call request queue, 4-16
Call request timeout, 4-16
Called address extension, A-2, A-6
Called module, 2-3

tasks for, 1-4
Calling module, 2-3

tasks for, 1-4
Changing the status of a transfer request

(FTSSUB)
example of, 6-13
input parameters, 6-11
output arguments, 6-12
returned error codes, 6-12

Checkpoint messages, 3-9
Cleared call, finding information about,

4-36
Clearing a call, 2-5,4-33
Clearing causes, 2-4, C-l
Clearing virtual circuits, 2-4, 3-9 to 3-10,

4-33
Communications lines, 2-3
Confirming clear requests, 3-10
Connected call, finding informatiation

about, 4-23
Consultative Committee for International

Telephony and Telegraphy
(CCITT), 1-3, A-1

Deassigning a port, 4-4,4-39,4-41
Defining constants, FTS programming,

6-2
Designing servers, 3-2
Detecting resets, 3-9
Diagnostic codes, 2-4, C-l

Error codes (FTSSUB), 6-5, 6-21
Error data structure (FT$SUB), 6-25

declaration of, 6-28

Error messages (FTS)
for FTSSUB, B-2
general, B-l

Extended packets, A-2
Extended port assignment, 4-4 to 4-5,4-39

Facilities field
as defined by PRIMENET, A-7
values of, A-7

Fast Select Facility, 1-5, 3-6,4-33
Fast select Facility, example of, 5-8
File Transfer Service (FTS), 6-1
File transmission, example of, 5-1
Front-end program, 1-5
Front-end window, 3-1
FTS error messages, B-l
FTS include file, 6-1
FTS programming, 1-5

defining keys and error codes, 6-1
functional categories, 6-3

FTS subroutine library, 1-5
FTSSLUB subroutine, referencing

requests, 6-17
FTSSUB subroutine, 1-5, 6-1

calling sequence, 6-1
change of status operations, 6-3
description of, 6-2
error data structure, 6-25
example of, 6-28
full program example, 6-28
internal vs. external names, 6-17
iteration, calling sequence for, 6-17
modifying a transfer request, 6-3
operating on all requests, 6-18
operating on all requests for the calling

user, 6-19
operating on all requests with the same

external name, 6-20
performing operations over a set of

requests, 6-17
referencing requests, 6-17
request data structure, 6-23
retrieving status information, 6-3
returned error codes, 6-21
setting up for transfer request

modification, 6-9
submitting a transfer request, 6-3

Incoming call, finding information about,
4-16

Insert files, 4-2
Internal vs. external names (FTSSUB),

6-17
Interrupt handling, 4-30
Interrupt packets, 4-28
IPCF programming examples, 5-1
IPCF subroutines, 1-3

applications' underlying structure, 1-3
calling sequence, 1-3
description of, 4-3
naming conventions, 4-1
short forms vs. long forms, 4-1
summary of, 4-2
tasks of, 1-4

ISO OSI model, 1-1

Loading the FTS library, 1-5
Loading the IPCF library, 4-2
Logical Channel Number (LCN), 2-3
Loopback, 4-32
Loopback connection, 2-3

M

Message protocols, defining, 3-9
Message size, 3-6
Mismatched buffer sizes, 4-30
Modifying a transfer request (FTSSUB)

example of, 6-10
input arguments, 6-7
output arguments, 6-9
returned error codes, 6-9

Multi-threaded server, 3-2

N

Naming user data, A-4
Nested EPFs, 4-43
Network events, waiting for, 3-6, 5-8
Network semaphore, 3-7, 3-11

waiting on, 4-44
Network Service Access Point (NSAP),

A-6
Network status information, 4-50
Notification of network events, 3-7

lndex-1

Programmer's Guide to Prime Networks

Operating on all requests for the calling
user (FTSSUB), 6-19

Operating on all requests (FTSSUB), 6-18
Operating on all requests with the same

external name (FTSSUB), 6-20

Packet, 1-1
Packet size, 3-6, A-6
Packet Switched Data Network (PSDN),

2-4
Performance issues, 3-5
Port mechanism, 2-1
Ports, 1-3,2-1

assignment of, 2-1, 2-3, 4-4
deassigning, 4-4,4-39
releasing, 3-10

PRIMENET
architecture of, 1-1,1-3
buffer space, 3-6 to 3-7
call request timeout, 4-16
clearing a call, 2-5
creating packets, 3-6
levels, 1-3
notification of network events, 3-7
remote login, 2-3
support of X.25 protocol, A-1
waiting for completed action, 4-44

PRIMENET Planning and Configuration
Guide, A-6

Program closedown, 3-10
Protocol defined, 1-3
Protocol ID field, A-2, A-4

Receive buffers, 4-30 to 4-31, 5-1
Receiving data, 4-30, 5-5
Referencing requests (FTSSUB), 6-17
Reinitializing network environment, 4-43
Remote login, 2-3
Request data structure (FTSSUB), 6-23

declaration of, 6-23
Requesting a call, 4-8
Resets, 2-4,4-30
Resetting a virtual circuit, 4-55
Restarting IPCF servers, 3-11
Retrieving the status of a transfer request

(FTSSUB)
example of, 6-16
input parameters, 6-14
output arguments, 6-15
returned error codes, 6-15

Return codes (IPCF), checking, 3-7
Route-through Server, 2-5

Sample programs, 5-1, 6-28
Servers

availability of, 3-2, 5-9
design of, 3-2, 5-8
timing aspects, 5-9

Setting up for transfer request modifica
tion (FTSSUB), 6-9

Short form subroutines, example using,
5-8

Single-threaded server, 3-2
Stackframe, allocating variables in, 3-3
START_NET command (PRIMOS), 3-10
START_NSR command (PRIMOS), 44
Status arguments, 3-2
Status codes, 2-5,3-7
STOP_NET command, effect on virtual

circuits, 3-10
Storage of variables, examples of,

3-3 to 3-5
Submitting a request for transfer

(FTSSUB)
example of, 6-7
input parameters, 6-3
ouput arguments, 6-4
returned error codes, 6-5
setting up for submission, 6-4

Subroutines Reference Guide, 3-7,4-43,
6-7

Testing return code values, 3-8
Throughput, A-6

see also: Performance issues
Timeouts, 3-7,4-44, 5-10
Timing aspects, 5-9
Transferring a call, 4-46, 5-8
Transmitting data, 4-26, 5-2

u
User Data field, A-4

Variables, storage of, 3-2
VFTSLB subroutine library, 1-5
Virtual circuit ID (VCID), 2-3,4-10,4-33
Virtual circuit status array, 2-4, 3-8

Virtual circuits, 2-3
clearing of, 2-4, 3-9 to 3-10,4-33
creating on local system, 2-3
maximum number of, 2-3
polling the state of, 2-4, 3-8
resets of, 2-4, 3-9,4-30
resetting, 4-55
timeout handling, 5-10
transferring to another process, 2-3,

4-46
VNETLB (IPCF library), 4-2

w
Waiting for completed PRIMENET action,

4-44
Waiting for network event, 5-8
Window size, 3-6, A-6

X.25 protocol, 3-9,4-1,4-22
facilities, A-5
for user data, A-4
list of source documents, A-1
PRIMENET's support of, A-1
restrictions, A-3
using optional fields with IPCF

parameters, A-2
XSACPT/XSFACP/XSSACP/XLACPT

subroutines
call syntax, 4-22
description of, 4-22
in window and packet size negotiation,

A-7
returned status codes, 4-24

XSASGN/XLASGN subroutines
call syntax, 4-5 to 4-6
description of, 4-5
returned status codes, 4-5,4-8
with called address extension, A-6

XSCLRA subroutine
call syntax, 4-43
description of, 4-43

XSCLR/XSFCLR/XLCLR
description of, 4-33
returned status codes, 4-35

XSCLR/XSFCLR/XLCLR subroutines.
call syntax, 4-34

XSCONN/XSSCON/XSFCON/XLCONN
subroutines

call syntax, 4-11
description of, 4-11
in window and packet size negotiation,

A-7

lndex-2

Index

r

returned status codes, 4-14
with called address extension, A-6

XSGCON/XSFGCN/XLGCON
subroutines

call syntax, 4-16
description of, 4-16
returned status codes, 4-18, 4-21

XSGVVC/XLGVVC subroutines
call syntax, 4-47
description of, 4-46
returned status codes, 4-49

XLGAS subroutine
call sequence, 4-25
description of, 4-25
returned status codes, 4-27

XLGCS subroutine
call syntax, 4-19
description of, 4-19
returned status codes, 4-21

XLGIS subroutine
call syntax, 4-36
description of, 4-36
returned status codes, 4-38

XSRCV subroutine,
description of, 4-30

XSRSET subroutine,
call syntax, 4-55
description of, 4-55

XSSTAT subroutine
call syntax, 4-50
description of, 4-50

XSTRAN subroutine
call syntax, 4-28, 4-31
description of, 4-28
returned status codes, 4-29, 4-31

XSUASN/XLUASN subroutines
call syntax, 4-39 to 4^t0
description of, 4-39
returned status codes, 4-42

XSWATT subroutine
call syntax, 4-44
description of, 4-44

lndex-3

Surveys

r

r

r
r

READER RESPONSE FORM

Programmer's Guide to Prime Networks
DOC10113-1LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our user
publications.

1. How do you rate this document for overall usefulness?

| | excellent Q very good Q good Q fair Q poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

I I Much better □ Slightly better □ About the same
I I Much worse □ Slightly worse □ Can't judge

5. Which other companies' manuals have you read?

Name:_
Position:
Company:
Address:_

JPostal Code:.

First Class Permit #531 Natick, Massachusetts 01760

Postage will be paid by:
BUSINESS REPLY MAIL

Prime
Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Contenst
	v
	vi
	About This Book
	vii
	viii
	Chapter 1
	Introduction to Network Programming
	1-1
	1-2
	1-3
	1-4
	1-5
	Chapter 2
	Ports and Virtual Circuits
	2-1
	2-2
	2-3
	2-4
	2-5
	Chapter 3
	IPCF Programming Principles
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	Chapter 4
	IPCF Subroutines
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	Chapter 5
	IPCF Programming Examples
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	Chapter 6
	FTS Programming
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	Appendices
	Appendix A
	X.25 Programming Guidelines
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	Appendix B
	FTS Error Messages
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	Appendix C
	Clearing Causes and Diagnostic Codes
	C-1
	C-2
	C-3
	C-4
	C-5
	Appendix D
	Prime Network Programming Glossary
	GL-1
	GL-2
	GL-3
	GL-4
	GL-5
	GL-6
	GL-7
	GL-8
	GL-9
	GL-10
	Index
	Index-1
	Index-2
	Index-3
	Surveys
	
	

